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Introduction 

 
The production of high-carbon ferromanganese in blast furnaces is reviewed, based on public literature and 
requests to consultants and suppliers to the industry. 
 
The review includes an overview of the FeMn production in blast furnaces during latest decades; main 
features of raw materials and reductants, and its influence on the process; raw materials preparation, including 
sintering; design features of the blast furnaces, lining, cooling, operating practice, combination with hot metal 
production, offgas treatment, specific consumption of coke and Mn ore, casting practice, and a comparison 
with submerged arc furnaces.  
 
 

Production of ferromanganese in blast furnaces 

 

High C FeMn world production has been in the order of the 5 Mtpy in the first decade of this century. In 
2008, 4.795.100 t has been produced, of which 3.419.900 t in Asia [1]. China is the largest producer, making 
half of the world’s production. Including SiMn smelters, some 600 companies are located in China, with a 
large excess of installed capacity [2]. 
 
Production of High C FeMn in blast furnaces is concentrated in China, Russia, Ukraine, Poland and Japan. 
Blast furnaces were widely used in developed countries, up to the end of the Second World War. At that time 
it was common that an integrated plant destined its smaller and older blast furnace to the production of High 
C FeMn. One reason for this scheme was that the top gas in the FeMn blast furnace entrained excessive fines. 
So, the sensible heat of the top gas was not useful for air reheating in the stoves, using for the hot blast air 
coming from the other furnaces (those producing iron). Years later, these submerged arc furnaces (SAF) 
replaced blast furnaces for the FeMn production, due to having less coke consumption, longer refractory life, 
no need of air preheating, etc. Besides, the MnO-rich slag from High-C FeMn production in SAFs could be 
recovered by using it as a raw material for the production of FeSiMn. 
 
In Russia and China the abundance of low Mn ores could have been a driver for keeping the blast furnaces 
running. In Japan,  the decision of building an FeMn blast furnace  was taken by the then Kawasaki Steel 
under the circumstances of the second oil crisis, to replace two SAFs with one blast furnace, in a plant 
supporting high electricity cost. 
 
Those plants continuing the operation of blast furnace for this purposes, have been enhancing raw materials 
preparation, equipment and operating practice, in order to improve specific consumption indices and 
decreasing cost per ton.   
 
 

Raw materials 

 
A short discussion of raw materials, reductants and fluxes features follows. 
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Mn Ore. Blast furnaces are more forgiving than SAFs regarding raw material quality. It is possible to 
consume efficiently Mn ores with a minimum of 28% Mn. 
 
Generally, Mn ore is composed by manganese oxides (MnO2, Mn2O3, Mn3O4), accompanied by iron oxide, 
silica and other oxides. Carbonates have been processed, too; at least in Russia and China. 
 
Attention is paid to Mn/Fe ratio. As iron oxide is fully reduced in the furnace, taking part in the ferroalloy, a 
low Mn/Fe ratio may imply that FeMn be below specification in Mn content. The ratio should be not less than 
7.5:1. Also important is the Phosphorus content, because in the blast furnace all charged phosphorus reports to 
the alloy. In table 1, a typical specification of Mn ore for ferromanganese production is presented. 
 
 
Mn (%) Fe (%) Al2O3 (%) Al2O3+SiO2 

(%) 
As (%) P (%) Cu+Pb+Zn 

(%) 
48 min. 6 max. 7 max. 11 max. 0.18 max. 0.19 máx. 0.30 max. 
 

Table 1. Typical specification for metallurgical grade Mn ore [3]. 
 
 
Brazil, Gabon, Australia and Russia have good quality manganese ore.  Azul mine, owned by Vale S.A., 
located in Carajás, Pará, is the more exploited in Brazil, although there are important reserves in Corumba, 
Matto Grosso do Sul. Azul Mn ore chemistry is presented in table 2. Ore processing in Azul mine consists of 
washing, grinding and screening operations, to obtain both lumps and sinter feed, figure 1. 
 
 
Mn (total) MnO2 (%) Fe2O3 (%) SiO2 (%) Al2O3 (%) K2O (%) P2O5 (%) 
52.0-53.0 78.8-80.0 2.5-4.2 1.4-2.0 4.3-5.0 0.8-1.2 0.20-0.22 
 

Table 2. Chemical composition of Azul mine iron ore in Carajás, Para, Brazil [3]. 
 
 

 
 
 

Figure 1. Scheme of Manganese ore processing at Azul mine, Carajás, Pará, Brazil [3]. 
 

402



   

 
In China and Russia, Mn ore with 30% Mn content is used, with high amount of fines. This calls for 
introduction of sinterplants, also utilized for the charging of submerged arc furnaces.  
 
As an example, in table 3 the percentage of sinter used in certain Chinese plants at certain time, is detailed. 
 
 
Plant Xinyu Saoxin Yangkuan Bayi Guilin Xinyang Langfang Wujing Average 
Sinter 
% 

66.1 7.8 39.2 48.7 63.1 34.5 41.2 31.2 40.5 

 
Table 3. Proportion of MnO sinter used in Chinese blast furnaces in 1994-95 [4]. 

 
 
Results obtained by agglomeration of ore fines through sintering show clear improvements in coke 
consumption, Mn yield and productivity. As an example, in table 4 the evolution of several indices along a 
year, as the proportion of sinter in the charge increased from 60 to 100%, is presented 
  
 
Sinter (%) 60 70 80 90 100 
Coke (kg/t) 2196 2145 2083 2075 2064 
Fluxes (kg/t) 1158 978 604 526 355 
Slag (kg/t) 2684 2631 2484 2473 2465 
Productivity (t/m3.day) 0.465 0.492 0.509 0.514 0.537 
 
Table 4. Evolution of some indices with the increase of sinter in the charge, based on data taken from [4]. 
 
 
Reductants. Normally, coke obtained from coking coals, in conventional batteries (with recovery of 
byproducts or in non-recovery/heat-recovery batteries, is used. Size is 20-60 mm, as for iron blast furnaces. 
As a difference with submerged arc furnaces, which are flexible from the point of view of reductant type (due 
to less height), to our knowledge, there is no report of use of reductants other than metallurgical coke in FeMn 
blast furnaces. In SAFs, use of charcoal and pet coke to complement coal coke has been reported. 
 
Two Brazilian companies producing pig iron in charcoal-based blast furnaces, that wanted to move to 
ferromanganese production, projected to change to coke to that purpose [5].  
 
The injection of pulverized coal through the tuyeres, as used in iron blast furnaces, has been suggested [6]. No 
reports on such practice have been published, with the exception of an experimental shaft furnace developed 
in Japan [7].  In the Japanese blast furnace, 100 kg/t fuel oil is injected [8]. 
 
Fluxes. Slag chemistry control is required, for the slag to flow through taphole and runners; for not having 
high MnO; for desulfurization and for Na2O / K2O absorption. Limestone and dolomite are used for slag 
basicity management.  
 
It is convenient to introduce part of the fluxes through sinter or with previous calcination, as lime. CO2 
generated while calcining limestone has several negative aspects [6]: 
 

- Carbonate decomposition requires heat (the reaction is endothermic) 
- Boudouard reaction between coke carbon and CO2: C+ CO2=CO takes place, consuming both 

heat and carbon 
- It complicates Gas distribution and operation evenness  

 
The starting solution in China was the use of calcined lime. Yanggang applied it with immediate results: a 
decrease of 22% in coke consumption and an increase 33% in FeMn production [6]. Then, Xinggang started 
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to add dolomite in the sinterplant, instead of doing that in the furnace. Finally, most plants tended to charge a 
high basicity, high MgO sinter, and calcined lime in the furnace, simultaneously. 
 
Aspects to highlight are that limestone may be overcalcined, but not semicalcined; fines must be eliminated; 
sinter basicity must be high (recommended value 1.7 ternary basicity).  
 
 

Blast Furnace 

 
Blast furnaces for FeMn production are generally speaking similar to those producing iron, with some 
differences discussed below. They tend to be smaller and less updated in technology. 
 
In figure 2 a sketch of a blast furnace proposed by a Chinese Supplier is shown. It has an inner volume of 55 
m3, with a hearth diameter of 5 m and a height of 13 m, for a daily production of 35 t. Space required for the 
installation is 2000 m2; cost including two stoves, installation for gas treatment and training of the operators is 
in the order of USD 3 M[ 9]. 

 
Figure 2. Sketch of a blast furnace for FeMn production currently proposed by a Chinese company [9]. 1 y 2: 
System for charging raw materials; 3: furnace body; 4: FeMn tap hole; 5: Hot blast through tuyeres; 6: stoves; 

7: gravity filter; 8: venturi; 9: gas washing tower; 10: stack. 
 
 
The only FeMn Japanese blast furnace is shown in figure 3. As mentioned previously, it was introduce to 
replace two SAFs in a decision taken at the second oil crisis, but is still in operation. The charging system, as 
seen in the figure, is a bell-less top with a cardanic distribution system, instead of the bell top in the Chinese 
design of figure 2. 
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Figure 3. Cut of the FeMn blast furnace of Mizushima Ferroalloys, with bell-less top and a cardanic system 
for charge distribution [10]. 

 
 
In table 5 some FeMn blast furnaces are listed. The Chinese supplier mentions as standard size 55 m3; 100 m3; 
175 m3; 200 m3 and 300 m3. All fall within the range of 500 m3 maximum, usually taken as the range for mini 
blast furnaces.  
 
 

Plant Country Volume (m3) Reference 
Wujin Alloy Works China 60 6 
Jiang Xiniu China 255 4 
Mizushima Ferroalloys Japan 398 10 
 

Table 5. Inner volume of some FeMn blast furnaces. 
 
 
According to references, productivity varies from 0.5 to 0.9 t/m3.day.  
 
Russian designs seem to differentiate FeMn from iron blast furnaces in the following features: upper shaft 
cooling, discussed below; sprayers for the charge, and the use of slag taphole, not common in their designs 
for iron blast furnaces, with much less slag volume [12]. 
  
There are important metallurgical differences between both types of blast furnaces. MnO2 and Mn2O3 are 
reduced easily to MnO, but MnO reduction occurs only directly with C, and requires much more energy than 
FeO. Because of this, the reaction takes place in the lower part of the furnace. The energy needs are covered 
with coke consumption three times higher than that for ironmaking. Slag volumes are much higher, and 
generally the FeMn blast furnaces are operated with slags of higher basicity. 
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Gas generation is much higher too, and with more content of fines. Adiabatic flame temperature is higher; CO 
content and top gas temperature, are also higher. In figure 4, some of these differences are highlighted.  
 

 
 

Figure 4. Comparison of metallurgical reactions, gas chemistry and temperature conditions between 
Mizushima Ferro-Alloy FeMn blast furnace (left) and Kawasaki Steel iron blast furnaces (right) [11]. 

 
 
In the following, some issues considered important for economic operation of FeMn blast furnaces are 
discussed. 
 
Refractories. In general, campaigns of FeMn blast furnaces are shorter than those of iron blast furnaces.  
Higher temperatures favor refractory wear. The appetite of Mn for silica contained in the refractories is well 
known.  In China, after six months of start-up, wear developed. In one or two years, more and more erosion 
occurred, giving place to abnormal charge distribution and operating problems. Despite efforts, campaigns 
were no longer of two to four years. 
 
The solution to the problem was found in the 60s in the Yanggang plant. A furnace that was switched from Fe 
to FeMn started to display erosion in the belly and in the center of the upper shaft, and in two years had no 
lining in those zones. Bell diameter was enlarged, achieving a central distribution of gases, and the problem 
was overcome. This was the first FeMn furnace in China operating without lining [6]. 
 
After that, a new furnace was built, with water cooling of the full body. As this furnace had a long campaign 
and good production indexes, the other Chinese FeMn blast furnaces copied the design. Since then, these 
furnaces are designed with the standard refractories in the hearth, while the bosh is lined cooling staves and 
chamotte bricks. In the outer shaft and the throat, water sprays are used. 
 
In figure 5, the design of cooling plates for the Japanese FeMn blast furnace is presented [11]. 
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Figure 5. Cooling plates in blast furnace of Mizushima Ferroalloys [11]. 
 
 
These changes imply a large throat, a short bosh and a tall shaft. Belly diameter is larger and shaft angle 
enlarges, correspondingly with the increase in throat diameter. This coincides with the design presented in 
figure 2: a short furnace with large diameter, compared with usual design for ironmaking blast furnaces. 
 
Gas cleaning.  Mn ore may have big amount of fines; Mn ore sinter has low strength and may generate lot of 
fines, too. As a consequence, top gas entrains a high amount of fines. For economic production, it is necessary 
to utilize the sensible heat of the gas to preheat air blast in the stoves. As mentioned, this issue brought about 
that in multiple blast furnace plants, FeMn used to be produced in the smaller furnaces, using preheated air 
coming from the ironmaking furnaces. 
 
In China, the FeMn blast furnace producers adopted the gas cleaning system developed by Xingang in 1963, 
with the help of the Maanshan Iron & Steel Design Institute. An overflow Venturi was adopted before the 
washing tower and a dedusting cyclone was added, too. This way, the FeMn blast furnaces became 
independent of the ironmaking blast furnaces [6]. 
 
Manganese recovery. The main Mn loss is to the slag. To minimize it, the slag has to have the right 
chemistry, the FeMn in the hearth must have high temperature and the gas distribution in the furnace must be 
adequate. 
 
Generally, a good slag should have high basicity and high MgO content; Al2O3 content should be less than 
15% to avoid MgO.Al2O3 formation, due to its high melting point.  High temperature in the hearth means 
higher temperature in the zone where liquid metal and slags drip through coke, where most of the reduction 
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reaction takes place. To achieve such a high temperature, sinter must have the already mentioned features, 
together with a short range of softening temperature; air blast must be injected at high temperature and 
oxygen may be introduced through the tuyeres. 
 
Regarding gas distribution, the aim is to have the percentage of CO2 in the shape of a funnel [6].  
 
In table 6, the evolution of several parameters of charging and operation along thirty years in Xingang plant is 
presented, as an example of the trends in specific coke consumption, Mn recovery and slag chemistry. 
 
 
Ítem 1962-1964 1965-1974 1975-1979 1980-1981 
% Mn in charge (%) 32.4 32.4 29.9 32.9 
Specific coke consumption (kg/t) 2215 2040 1907 1722 
Mn yield (%) 69.5 77.5 79.4 84.2 
Si in FeMn (%) 1.10 1.01 1.07 0.99 
CaO/SiO2 in the slag 1.26 1.33 1.42 1.49 
MgO in the slag (%) 3.6 6.0 5.5 9.0 
Al2O3 in the slag (%) n.d. 15.1 14.0 11.8 
MnO in the slag (%) 14.2 9.4 8.3 4.8 
 

Table 6. Evolution of some indexes in Xingang FeMn blast furnace [4]. 
 
 

These practices are limited: if slag basicity is too high, high melting point phases may precipitate in the slag, 
as for instance 2CaO.SiO2, and the benefits may be lost. Also, if hearth temperature is too high, Mn 
volatilization loss may increase.  
 
Blast temperature. It is a known fact that in FeMn smelting the reduction process is direct, from the slag, in 
the lower part of the furnace, at high temperature (more than 1300 oC). Energy consumption is much higher 
than for pig iron production, and so specific coke consumption. Because of this, attention is paid to air blast 
temperature.  In figure 6, a heat balance of a particular blast furnace is presented. In this case, 30% of the heat 
is supplied by the hot blast and 60% by coke combustion in front of the tuyeres. 
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Figure 6. Heat balance of a FeMn blast furnace. Own, based on data in [13]. 

 
 
Normally, air is preheated at a temperature between 800 and 950 oC. A higher blast temperature should favor 
a better Mn recovery and smaller coke consumption. As in iron smelting blast furnaces, oxygen injection has 
been practiced [8, 13].    
 
Oxygen injection gives favorable results in a low blast temperature situation (up to 950 oC), high Mn content 
in the charge and low/medium basicity slag. Hearth temperature increases, as well as the reduction of 
manganese; this brings about a higher Mn yield and smaller coke consumption. Same effect could be obtained 
by increasing flux consumption, if slag basicity is too low. 
 
Instead, if preheating temperature is high (1000-1150 oC), this assures a flame temperature high enough 
(2260-2350 oC), although only air is being blast, and reasonable Mn yield and coke consumption. Under these 
conditions, oxygen injection may have negative results [13].  
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At pilot plant level, as high blast temperature as 1400 oC has been tested. Modifications were necessary in raw 
materials charged, as well as in the design and operation of the furnace, to be able to operate in uniform 
conditions and withdraw all the advantages of this change [13].   
 
In general, air is heated in refractory stoves like in iron blast furnaces. An exception to this way is the 
Japanese blast furnace; a metallic recuperator was introduced, for continuous heat interchange (figure 7). This 
was probably because of lack of space, as this furnace was introduce into a building to replace two submerged 
arc furnaces. 
 
Start-up. This operation may have a very important incidence in achieving a satisfactory campaign. A 
standard practice for many furnaces is to start producing pig iron for Foundry or Steel production; then, 
gradually, to increase Mn ore in the charge, up to arrive to the minimum of the standard, usually in the third 
day after start-up [15]. 
 
A shorter start-up procedure has been successfully tested, charging some Mn ore from the very beginning, in 
such a way to obtain 25% Mn at the 8th hour; 50% Mn at the 16th hour and 70-75% Mn at the 24th hour [15]. 
 

 
Figure 7. Metallic recuperator for heating of air blast in Japanese blast furnace [11]. 

 
 

Comparison with submerged arc furnaces 

 
It is interesting to compare the use of blast furnace with the more popular submerged arc furnace, taking into 
account that they are the two dominant processes worldwide. In table 7 both routes are compared form the 
point of view of raw materials, specific consumptions, possibility of shifting to other products, metallic yield, 
smaller possible scale, etc.   
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Item Blast furnace Submerged arc furnace 
Mn Ore 28-30% Mn possible >35% Mn 
Coke consumption (kg/t) 1500-2000  310-380 
Electric energy consumption 
(kWh/t) 

200 2400 

Ore consumption 2500-3000 kg/t  
Mn yield 80 – 85 % 60 – 75% 
Phosphorus content High Low 
Slag formation (kg/t) 600-2700 600-700 
Other possible products Pig iron, FeTi, FeP FeSi, SiMn, Si, CaSi, 

FeSiMgCe, CaC2, pig iron 
Flexibility to demand Rigid (long campaign) Good  
Scale 35 t/day minimum 10 t/day mínimum 
 

Table 8. Comparison between blast furnace and submerged arc furnace for High C FeMn production. 
 

 
Conclusions 

 
Blast furnaces continue to be used for High-carbon FeMn production, where conditions favor this route (low 
ore quality, availability of existing furnaces). The smaller furnace being offered currently in the market 
produces around 35 t/day. For even running and for product within spec, the FeMn blast furnace must operate 
continuously, in years-long campaigns. 
 
In comparison with ironmaking, FeMn smelting needs higher temperature; coke consumption is much larger 
and much more slag is generated. Top gas needs a careful treatment due to the high amount of fines. 
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