

尜SLR

Technical Report for NI 43-101

Macpass Project, Yukon, Canada

Fireweed Metals Corp.

Prepared by:

SLR Consulting (Canada) Ltd.

SLR Project No.: 205.030126.00001

Effective Date:

October 17, 2024

Signature Date:

October 17, 2024

Revision: 1

Qualified Persons: Pierre Landry, P.Geo. Chelsea Hamilton, P.Eng. Kelly S. McLeod, P.Eng.

Making Sustainability Happen

Technical Report for NI 43-101 for the Macpass Project, Yukon, Canada

SLR Project No.: 205.030126.00001

Prepared by

SLR Consulting (Canada) Ltd. 55 University Ave., Suite 501 Toronto, ON M5J 2H7 for Fireweed Metals Corp. 1055 Dunsmuir St., Suite 2800

Vancouver, BC V7X 1L2

Effective Date - October 17, 2024 Signature Date - October 17, 2024

Prepared by: Pierre Landry, P.Geo. Chelsea Hamilton, P.Eng. Kelly S. McLeod, P.Eng.

Peer Reviewed by: Luke Evans, M.Sc., P.Eng., ing Approved by:

Project Manager Pierre Landry, P.Geo.

Project Director Luke Evans, M.Sc., P.Eng., ing

Table of Contents

1.0	Summary	1-1
1.1	Executive Summary	1-1
1.2	Technical Summary	1-5
2.0	Introduction	2-1
2.1	Sources of Information	2-1
2.2	List of Abbreviations	2-3
3.0	Reliance on Other Experts	3-1
4.0	Property Description and Location	4-1
4.1	Location	4-1
4.2	Land Tenure	4-3
4.3	Property Agreements and Royalties	4-5
4.4	Environmental Liabilities	4-8
4.5	Permitting Considerations	4-9
4.6	First Nations	4-11
4.7	Significant Factors and Risks	4-11
5.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography	5-1
5.1	Topography, Elevation, and Vegetation	5-1
5.2	Accessibility	5-2
5.3	Climate	5-3
5.4	Local Resources	5-3
5.5	Infrastructure	5-3
5.6	Indigenous Group Engagement	5-4
6.0	History	6-1
6.1	Prior Ownership	6-1
6.2	Exploration and Development History	6-2
6.3	Historical Resource Estimates	6-5
6.4	Past Production	6-6
7.0	Geological Setting and Mineralization	7-1
7.1	Regional Geology	7-1
7.2	Property Geology	7-4
8.0	Deposit Types	8-1

9.0	Exploration	9-1
9.1	Surficial Mapping	9-1
9.2	Bedrock Mapping and Prospecting	9-3
9.3	Soil Geochemistry	9-5
9.4	Ground Gravity Surveying	9-7
9.5	Electromagnetic (EM) and Magnetic Surveys	9-9
9.6	LiDAR Topographic Mapping	9-12
9.7	Exploration Potential	9-14
10.0	Drilling	10-1
10.1	Core Storage	10-8
11.0	Sample Preparation, Analyses, and Security	11-1
11.1	Pre-2011 Sample Preparation and Analyses	11-1
11.2	2011 Sample Preparation, Analyses and Security	11-2
11.3	2017-2023 Sample Preparation and Analyses	11-5
11.4	Quality Assurance and Quality Control	11-17
12.0	Data Verification	12-1
12.1	Fireweed Data Verification	12-1
12.2	Re-sampling	12-2
12.3	SLR Data Verification	12-3
13.0	Mineral Processing and Metallurgical Testing	13-1
13.1	Introduction	13-1
13.2	2018 Test Program (Tom and Jason)	13-2
13.3	2022 Test Program (Boundary Zone)	13-14
13.4	2023 Test Program (Boundary Zone)	13-18
13.5	Concentrate Quality	13-23
14.0	Mineral Resource Estimates	14-1
14.1	Summary	14-1
14.2	Resource Database	14-3
14.3	Tom Deposit	14-6
14.4	Jason and End Zone Deposits	14-62
14.5	Boundary Zone Deposit	.14-117
14.6	Cut-off Grade Inputs Supporting NSR and ZnEq Calculations	.14-164
14.7	Mineral Resource Reporting	.14-173
14.8	Additional Information	.14-213

15.0	Mineral Reserve Estimates15-1
16.0	Mining Methods16-1
17.0	Recovery Methods17-1
18.0	Project Infrastructure
19.0	Market Studies and Contracts19-1
20.0	Environmental Studies, Permitting, and Social or Community Impact20-1
21.0	Capital and Operating Costs21-1
22.0	Economic Analysis22-1
23.0	Adjacent Properties23-1
23.1	Mactung Property (Mactung Deposit)23-1
23.2	Rogue Property (Valley Deposit)23-1
24.0	Other Relevant Data and Information24-1
25.0	Interpretation and Conclusions25-1
25.1	Geology and Mineral Resources25-1
25.2	Mineral Processing and Metallurgical Testing25-1
26.0	Recommendations26-1
26.1	Geology and Mineral Resources
26.2	Mineral Processing and Metallurgical Testing26-2
27.0	References
28.0	Date and Signature Date28-1
29.0	Certificate of Qualified Person29-1
29.1	Pierre Landry
29.2	Chelsea Hamilton
29.3	Kelly McLeod29-3
30.0	Appendix 1 - Macpass Project Claims and Leases

Tables

Table 1-1:	Open Pit and Underground Mineral Resource Estimate, September 4, 2024
Table 2-1:	Qualified Persons and Responsibilities
Table 4-1:	Historical Claim Groups of the Macpass Property 4-5
Table 6-1:	2018 MRE at NSR cut-off grade of C\$65/t for the Tom and Jason Deposits
Table 6-2:	2007 MRE for Tom and Jason Deposits
Table 10-1:	Summary of Drilling on the Macpass Property 10-2
Table 11-1:	Summary of CRM Performance for 2011 Assays 11-3
Table 11-2:	Summary of Laboratory Precision and Bias from Check Assays for 2011 11-5
Table 11-3:	Summary of CRM Performance for 2017-2023 Assay Sampling 11-12
Table 11-4:	Summary of Precision Estimates Based on Quarter Core Duplicates 11-14
Table 13-1:	Preliminary Recovery Projections for Macpass
Table 13-2:	LCT Summary Lead Concentrate Tests 13-3
Table 13-3:	LCT Summary Zinc Concentrate Tests 13-3
Table 13-4:	Composite Sample Head Assays 13-4
Table 13-5:	Bond Ball Mill Work Index Results 13-6
Table 13-6:	SMC Data for Composites 1 and 3A 13-6
Table 13-7:	Bond Abrasion Results for Composites 1 and 3A 13-6
Table 13-8:	DMS Results for Composites 1 and 3A 13-7
Table 13-9:	Summary of Cleaner Flotation Results
Table 13-10:	Composition of Tom & Jason Composites 13-10
Table 13-11:	Locked Cycle Testing Results
Table 13-12:	Head Assays 13-15
Table 13-13:	Comminution Results
Table 13-14:	Open Circuit Cleaner Tests – Boundary Zone 13-17
Table 13-15:	Composite Head Grades 13-18
Table 13-16:	Comminution Summary 13-19
Table 13-17:	Rougher Flotation Results 13-20
Table 13-18:	NB21-001-MS-01 Cleaner Flotation Results – Boundary Zone 13-21
Table 13-19:	Cleaner Flotation Results – Boundary Zone 13-22
Table 13-20:	Zinc Concentrate Minor Element Results for BL0755 and BL1140 13-23

Table 14-1:	Open Pit and Underground Mineral Resource Estimate, September 4, 2024	14-1
Table 14-2:	Open Pit Mineral Resource Estimate, September 4, 2024	14-2
Table 14-3:	Underground Mineral Resource Estimate, September 4, 2024	14-3
Table 14-4:	Tom West Estimation Domains	14-13
Table 14-5:	Tom Southeast Estimation Domains	14-17
Table 14-6:	Tom East Estimation Domains	14-17
Table 14-7:	Tom, Capped Zinc Assay Statistics	14-21
Table 14-8:	Tom, Capped Lead Assay Statistics	14-22
Table 14-9:	Tom, Capped Silver Assay Statistics	14-23
Table 14-10:	Tom, Capped Barium Assay Statistics	14-24
Table 14-11:	Tom, Capped Germanium Assay Statistics	14-25
Table 14-12:	Tom, Capped Gallium Assay Statistics	14-26
Table 14-13:	Tom Density Regression Equations	14-28
Table 14-14:	Tom Mean Measured Density Values	14-29
Table 14-15:	Tom Germanium and Gallium Regression Equations	14-30
Table 14-16:	Tom, Regressed Germanium Assay Statistics	14-31
Table 14-17:	Tom, Regressed Gallium Assay Statistics	14-31
Table 14-18:	Tom Interval Length Statistics by Area	14-32
Table 14-19:	Tom Zinc Composite Statistics	14-33
Table 14-20:	Tom Lead Composite Statistics	14-34
Table 14-21:	Tom Silver Composite Statistics	14-35
Table 14-22:	Tom Barium Composite Statistics	14-36
Table 14-23:	Tom Germanium Composite Statistics	14-37
Table 14-24:	Tom Gallium Composite Statistics	14-38
Table 14-25:	Tom West Zn, Pb, and Ag Variograms	14-43
Table 14-26:	Tom East Zn, Pb, and Ag Variograms	14-46
Table 14-27:	Tom West and Southeast Search Ellipse Ranges	14-47
Table 14-28:	Tom West and Southeast Search Strategy and Interpolation Parameters	14-47
Table 14-29:	Tom West and Southeast High-Grade Search Restriction	14-48
Table 14-30:	Tom East Search Ellipse Ranges	14-48
Table 14-31:	Tom East Search Strategy and Interpolation Parameters	14-48
Table 14-32:	Tom East High-Grade Search Restriction	14-48
Table 14-33:	Tom Block Model	14-49
Table 14-34:	Tom Assay, Composite, and Block Comparisons	14-53

Table 44.05.	lessen Main Fatimation Demains
Table 14-35:	Jason Main Estimation Domains
Table 14-36:	Jason South Estimation Domains
Table 14-37:	End Zone Estimation Domains
Table 14-38:	Jason, Capped Zn Assay Statistics
Table 14-39:	Jason, Capped Pb Assay Statistics 14-77
Table 14-40:	Jason, Capped Ag Assay Statistics 14-78
Table 14-41:	Jason, Capped Ba Assay Statistics
Table 14-42:	Jason, Capped Ge Assay Statistics 14-79
Table 14-43:	Jason, Capped Ga Assay Statistics 14-79
Table 14-44:	End Zone, Capped Zn Assay Statistics 14-79
Table 14-45:	End Zone, Capped Pb Assay Statistics14-80
Table 14-46:	End Zone, Capped Ag Assay Statistics14-80
Table 14-47:	End Zone, Capped Ba Assay Statistics14-80
Table 14-48:	End Zone, Capped Ge Assay Statistics 14-81
Table 14-49:	End Zone, Capped Ga Assay Statistics 14-81
Table 14-50:	Jason and End Zone Density Regression Equations 14-83
Table 14-51:	Jason and End Zone Mean Measured Density Values
Table 14-52:	Jason and End Zone Germanium and Gallium Regression Equations 14-84
Table 14-53:	Jason and End Zone, Regressed Germanium Assay Statistics 14-85
Table 14-54:	Jason and End Zone, Regressed Gallium Assay Statistics
Table 14-55:	Jason and End Zone Interval Length Statistics by Area 14-87
Table 14-56:	Jason Two Metre Zinc Composite Statistics 14-87
Table 14-57:	Jason Two Metre Lead Composite Statistics 14-88
Table 14-58:	Jason Two Metre Silver Composite Statistics
Table 14-59:	Jason Two Metre Barium Composite Statistics 14-89
Table 14-60:	Jason Two Metre Germanium Composite Statistics
Table 14-61:	Jason Two Metre Gallium Composite Statistics
Table 14-62:	End Zone Two Metre Zinc Composite Statistics
Table 14-63:	End Zone Two Metre Lead Composite Statistics
Table 14-64:	End Zone Two Metre Silver Composite Statistics
Table 14-65:	End Zone Two Metre Barium Composite Statistics 14-92
Table 14-66:	End Zone Two Metre Germanium Composite Statistics
Table 14-67:	End Zone Two Metre Gallium Composite Statistics
Table 14-68:	Jason Main Zinc, Lead, and Silver Variograms

Table 14-69:	Jason and End Zone Search Strategy Parameters 14-96
Table 14-70:	Jason and End Zone Interpolation Parameters 14-96
Table 14-71:	Jason High-Grade Search Restriction 14-96
Table 14-72:	Jason Block Model 14-97
Table 14-73:	End Zone Block Model 14-97
Table 14-74:	Jason Deposit Assay, Composite, and Block Comparisons 14-102
Table 14-75:	End Zone Assay, Composite, and Block Comparisons 14-110
Table 14-76:	Modelled Lithological Units for Boundary Zone 14-120
Table 14-78:	Boundary Zone, Uncapped and Capped Zinc Assay Statistics 14-125
Table 14-79:	Boundary Zone, Uncapped and Capped Lead Assay Statistics 14-126
Table 14-80:	Boundary Zone, Uncapped and Capped Silver Assay Statistics 14-127
Table 14-81:	Boundary Zone, Uncapped and Capped Barium Assay Statistics 14-128
Table 14-82:	Boundary Zone, Uncapped and Capped Germanium Assay Statistics 14-129
Table 14-83:	Boundary Zone, Uncapped and Capped Gallium Assay Statistics 14-130
Table 14-84:	Boundary Zone Estimation Domains Mean Measured Density Values 14-131
Table 14-85:	Boundary Zone Lithology Domains Mean Measured Density Values 14-132
Table 14-86:	Boundary Zone Germanium and Gallium Regression Equations 14-133
Table 14-87:	Boundary Zone Regressed Germanium Assay Statistics by Mineralization Type
Table 14-88:	Table Boundary Zone Regressed Gallium Assay Statistics byMineralization Type
Table 14-89:	Boundary Zone Zinc Composite Statistics
Table 14-90:	Boundary Zone Lead Composite Statistics
Table 14-91:	Boundary Zone Silver Composite Statistics
Table 14-92:	Boundary Zone Barium Composite Statistics
Table 14-93:	Boundary Zone Gallium Composite Statistics 14-140
Table 14-94:	Boundary Zone Germanium Composite Statistics
Table 14-95:	Boundary Zone Length Difference Between Composites and Capped Assays
Table 14-96:	Search Ellipse Dimensions
Table 14-97:	Number of Composites Used in Interpolation
Table 14-98:	Boundary Zone Block Model 14-147
Table 14-99:	Block Model Parameters
Table 14-100:	Verification of Block Volumes Against Wireframe Volumes by Domain 14-151
Table 14-101:	Comparison of Global Means of Composite and Block Grades by Domain 14-152

Table	14-102:	Comparison Between Zinc (%) Grade Interpolated Using ID^2 and NN 1	4-154
Table	14-103:	Metallurgical Assumptions for NSR and ZnEq Calculations 1	4-164
Table	14-104:	List of Global Assumptions for NSR Calculations, Cut-off Grade Determinations, and Reporting Parameters	4-165
Table	14-105:	Open Pit Optimization Inputs 1	4-166
Table	14-106:	Revenue Factors and Strip Ratios 1	4-166
Table	14-107:	Underground Optimization Inputs 1	4-167
Table	14-108:	Mineral Resource Sensitivity to Metal Pricing 1	4-168
Table	14-109:	Tom Open Pit and Underground Mineral Resource Estimate, September 4, 2024	4-173
Table	14-110:	Tom Open Pit Mineral Resource Estimate, September 4, 2024 1	4-174
Table	14-111:	Tom Underground Mineral Resource Estimate, September 4, 2024 1	4-174
Table	14-112:	Tom 2024 Mineral Resources Versus 2018 Mineral Resources for Tom 1	4-183
Table	14-113:	Jason Open Pit and Underground Mineral Resource Estimate, September 4, 2024 1	4-184
Table	14-114:	Jason Open Pit Mineral Resource Estimate, September 4, 2024 1	4-184
Table	14-115:	Jason Underground Mineral Resource Estimate, September 4, 2024 1	4-185
Table	14-116:	Jason 2024 Mineral Resources Versus 2018 Mineral Resources 1	4-201
Table	14-117:	Boundary Zone Summary of Combined (Open Pit and Underground) Mineral Resources, September 4, 20241	4-202
Table	14-118:	Boundary Zone Summary of Open Pit Mineral Resources, September 4, 2024 1	4-203
Table	14-119:	Boundary Zone Summary of Underground Mineral Resources, September 4, 2024 1	4-203
Table	14-120:	Summary of Combined (Open Pit and Underground) Mineral Resources, Germanium and Gallium, October 17, 20241	4-213
Table	14-121:	Summary of Open Pit Mineral Resources, Germanium and Gallium, October 17, 2024 1	4-215
Table	14-122:	Summary of Underground Mineral Resources, Germanium and Gallium, October 17, 20241	4-215
Table	14-123:	Tom Summary of Combined (Open Pit and Underground) Mineral Resources, Germanium and Gallium, October 17, 2024	4-216
Table	14-124:	Tom Summary of Open Pit Mineral Resources, Germanium and Gallium, October 17, 2024 1	4-216
Table	14-125:	Tom Summary of Underground Mineral Resources, Germanium and Gallium, October 17, 2024 1	4-217
Table	14-126:	Jason and End Zone Summary of Combined (Open Pit and Underground) Mineral Resources, Germanium and Gallium, October 17, 2024	4-217

Table	14-127:	Jason and End Zone Summary of Open Pit Mineral Resources, Germanium and Gallium, October 17, 2024	14-218
Table	14-128:	Jason and End Zone Summary of Underground Mineral Resources, Germanium and Gallium, October 17, 2024	14-218
Table	14-129:	Boundary Zone Summary of Combined (Open Pit and Underground) Mineral Resources, Germanium and Gallium, October 17, 2024	14-219
Table	14-130:	Boundary Zone Summary of Open Pit Mineral Resources, Germanium and Gallium, October 17, 2024	14-219
Table	14-131:	Boundary Zone Summary of Underground Mineral Resources, Germanium and Gallium, October 17, 2024	14-220

Figures

Figure 4-1:	Location Map	4-2
Figure 4-2:	Property Map	4-4
Figure 4-3:	Summary of Royalties and Agreements	4-7
Figure 5-1:	Macmillan Pass Aerodrome and North Canol Road in Typical Property Topography	5-2
Figure 7-1:	Regional Geological Setting of Zn-Pb-Ag Deposits of the Selwyn Basin	7-2
Figure 7-2:	Stratigraphy of the Selwyn Basin and Belt Purcell Group	7-3
Figure 7-3:	Geological Map of the Macpass Property (Bedrock Geology from YGS Regional Mapping)	7-5
Figure 7-4:	Detailed Stratigraphy of the Tom, Jason, and Boundary Zone Deposits	7-6
Figure 7-5:	Tom Deposit Geology and Domains Map	7-8
Figure 7-6:	Massive Sulphide Feeder Facies from TS23-009	7-10
Figure 7-7:	Pink Facies from TS23-006	7-10
Figure 7-8:	Grey Facies from TS23-007	7-10
Figure 7-9:	Black Facies from TS23-003	7-10
Figure 7-10:	Jason Deposit Geology and Domains Map	7-12
Figure 7-11:	Pb-Zn-Fe Sulphide Facies from JS80-059	7-13
Figure 7-12:	Barite-Sulphide Facies from JS23-001D1	7-14
Figure 7-13:	Quartz-Sulphide Facies from JS81-068W1	7-14
Figure 7-14:	Massive Pyrite Facies from JS82-086W1	7-14
Figure 7-15:	Ferroan Carbonate Facies from JS80-056W1	7-14
Figure 7-16:	End Zone Geology Map	7-16
Figure 7-17:	Feeder-Proximal Facies from EZ18-001	7-17
Figure 7-18:	Boundary Zone Geology and Domains Map	7-18

Figure 7-19:	Boundary Zone Fuller Lake NB23-035 Core Photo	. 7-20
Figure 7-20:	Boundary Zone Upper Zone NB23-013 Core Photo	. 7-20
Figure 7-21:	Boundary Zone Prime Zone NB23-028 Core Photo	. 7-20
Figure 7-22:	Boundary Zone Vein Mineralization NB23-029 Core Photo	. 7-20
Figure 7-23:	Hydrothermal Sphalerite Breccia Developed Along a Stylolite, Boundary Zone	. 7-21
Figure 8-1:	Contrasting Models for CD-type Mineralization in the Selwyn Basin	8-2
Figure 9-1:	Surficial Geology	9-2
Figure 9-2:	Zn-in-Rock Geochemistry	9-4
Figure 9-3:	Pb-in-Soil Geochemistry	9-6
Figure 9-4:	2018-2021 Ground Gravity Surveys	9-8
Figure 9-5:	Macpass Airborne EM Surveys	. 9-10
Figure 9-6:	Macpass Airborne Magnetic Surveys	. 9-11
Figure 9-7:	LiDAR Surveys Completed by Fireweed	. 9-13
Figure 9-8:	Macpass Target Development and 2024 Exploration Plans	. 9-15
Figure 10-1:	Drill Holes at Tom	. 10-4
Figure 10-2:	Drill Holes at Jason	. 10-5
Figure 10-3:	Drill Holes at End Zone	. 10-6
Figure 10-4:	Drill Holes at Boundary Zone	. 10-7
Figure 11-1:	Sample Security	. 11-8
Figure 11-2:	Example CRM Results - OREAS 131b, Zinc, Lead, Silver, 2018-2023	11-10
Figure 11-3:	Example CRM Results - OREAS 316, Zinc, Lead, Silver, 2022-2023	11-11
Figure 11-4:	Blank Sample Results, Zinc, Lead, Silver, 2018-2023	11-13
Figure 11-5:	Check Assay Plots for 2017-2023 Samples – Zinc, Lead, Silver, Barium	11-15
Figure 11-6:	Example Bulk Density SRM Performance	11-16
Figure 11-7:	Bulk Density Duplicate Performance	11-17
Figure 12-1:	Collar Location Field Check (TS17-003)	. 12-4
Figure 13-1:	Release Curve for Galena Liberation	. 13-5
Figure 13-2:	Release Curve for Sphalerite Liberation	. 13-5
Figure 13-3:	DMS Composite 1 Mass Rejection Versus Recovery Curves	. 13-8
Figure 13-4:	DMS Composite 3A Mass Rejection Versus Recovery Curves	. 13-8
Figure 13-5:	Flotation Test Work Flowsheet	. 13-9
Figure 13-6:	The Effect of Zinc Regrind Size on Zinc Concentrate Grade Versus	
	Recovery Curves	
Figure 13-7:	Locked Cycle Test Flowsheet	13-12

Figure 13-8:	Locked Cycle Testing – Zinc and Silica Grades in the Final Concentrate 13-13
Figure 13-9:	Open Circuit Lead Recovery Curves
Figure 13-10:	Open Circuit Zinc Recovery Curves 13-17
Figure 13-11:	Pre-Float Flowsheet
Figure 13-12:	Cleaner Pre-Float Flowsheet 13-21
Figure 13-13:	Zinc Grade Versus Recovery Curve 13-22
Figure 14-1:	Oblique View of Mineralized Domains at Tom (TS18-005 vs. TU039) 14-5
Figure 14-2:	Oblique View Looking Down on Mineralized Domains at Tom 14-7
Figure 14-3:	Plan View and Cross Section Through Tom West Geological Model 14-9
Figure 14-4:	Oblique Longitudinal View and Plan View Through Tom West Mineralized Domains
Figure 14-5:	Cross Section Through Tom East Mineralized Domains
Figure 14-6:	Oblique View Showing the Grade Contouring of Zn in Tom West TSBF, TSGF, and TSPF Combined Domain14-15
Figure 14-7:	Oblique View Showing the Sub-Horizontal and Sub-Vertical Estimation Domains Used for Tom West
Figure 14-8:	Log Probability Plot for Lead in Tom East, TELW. Capped at 22% Pb 14-18
Figure 14-9:	Histogram for Lead in Tom East, TELW. Capped at 22% Pb 14-19
Figure 14-10:	Log Probability Plot for Silver in Tom West, TSPF. Capped at 400 ppm Ag, High-Grade Search Restriction at 240 ppm Ag
Figure 14-11:	Histogram for Silver in Tom West, TSPF. Capped at 400 ppm Ag, High- Grade Search Restriction at 240 ppm Ag 14-20
Figure 14-12:	Scatterplot of Zn + Pb + Fe + Ba Compared to Density Within the Tom West Domain
Figure 14-13:	Scatterplot of Zinc Compared to Germanium Within Tom West Domain 14-30
Figure 14-14:	Histogram of Assay Interval Lengths Within Mineralization Domains for Tom
Figure 14-15:	Modelled Variogram for Zinc in Tom West Combined Sub-Vertical TSBF, TSGF, and TSPF Combined Domain
Figure 14-16:	Modelled Variogram for Lead in Tom East TELW Domain 14-41
Figure 14-17:	Modelled Variogram for Silver in Tom West Sub-Vertical TSSX 14-42
Figure 14-18:	Indicated and Inferred Material at Tom West 14-50
Figure 14-19:	Indicated and Inferred Material at Tom East 14-52
Figure 14-20:	Tom West Zinc Blocks Versus Composites 14-56
Figure 14-21:	Tom West Lead Blocks Versus Composites 14-57
Figure 14-22:	Tom East Silver Blocks Versus Composites 14-58
Figure 14-23:	Example Swath Plots for Zinc ID ² and Zinc NN, in Tom West 14-59

Figure 14-24:	Example Swath Plots for Lead ID ² and Lead NN, in Tom West 14-60
Figure 14-25:	Example Swath Plots for Silver ID ² and Silver NN, in Tom East 14-61
Figure 14-26:	Plan View of Mineralized Domains at Jason and End Zone 14-63
Figure 14-27:	Plan View and Cross Section Through Jason Mineralized Domains 14-65
Figure 14-28:	Plan View and Cross Section Through End Zone Mineralized Domains 14-66
Figure 14-29:	Histogram of Raw Zinc Assays for the Jason (right) and End Zone (left) Deposits
Figure 14-30:	Histogram of Raw Lead Assays for the Jason (right) and End Zone (left) Deposits
Figure 14-31:	Histogram of Raw Silver Assays for the Jason (right) and End Zone (left) Deposits
Figure 14-32:	Scatter Plot for Germanium Versus Zinc at Jason Main 14-72
Figure 14-33:	Oblique View of Jason South JSLL High- and Low-Grade Domains
Figure 14-34:	Contact Plot Analysis Between Jason South JSLL Domain and Internal High-Grade
Figure 14-35:	Log Probability Plot for Zinc in Jason Main, JSMZ. No cap applied 14-76
Figure 14-36:	Histogram for Zinc in Jason Main, JSMZ. No cap applied 14-76
Figure 14-37:	Example Scatterplot of Zn + Pb + Fe + Ba Compared to Density Within the Jason Main Mineralization
Figure 14-38:	Scatterplot of Zinc Compared to Germanium Within the Jason Main Domain
Figure 14-39:	Histogram of Assay Interval Lengths Within Mineralization Domains for Jason and End Zone
Figure 14-40:	Modelled Variogram for Zinc in the Jason Main Domain
Figure 14-41:	Indicated and Inferred Material at Jason Main 14-98
Figure 14-42:	Inferred Material at Jason South 14-99
Figure 14-43:	Indicated and Inferred Material at End Zone 14-101
Figure 14-44:	Jason Main Zinc Blocks Versus Composites 14-104
Figure 14-45:	Jason South – JSUL – Lead Blocks Versus Composites 14-105
Figure 14-46:	Jason South – JSUL and JSLL – Silver Blocks Versus Composites 14-106
Figure 14-47:	Example Swath Plots for Zinc ID^2 and Zinc NN, in Jason Main 14-107
Figure 14-48:	Example Swath Plots for Lead ID^2 and Lead NN, in Jason South - JSUL 14-108
Figure 14-49:	Example Swath Plots for Silver ID^2 and Silver NN, in Jason South - JSUL. 14-109
Figure 14-50:	End Zone Zinc Blocks Versus Composites 14-111
Figure 14-51:	End Zone Lead Blocks Versus Composites 14-112
Figure 14-52:	End Zone Silver Blocks Versus Composites

Figure 14-53:	Example Swath Plots for Zinc ID ² and Zinc NN, in EZLL	. 14-114
Figure 14-54:	Example Swath Plots for Lead ID ² and Lead NN, in EZLL	. 14-115
Figure 14-55:	Example Swath Plots for Silver ID ² and Silver NN, in EZLL	. 14-116
Figure 14-56:	Plan View of the Lithological Model for Boundary Zone	. 14-118
Figure 14-57:	Oblique View of the Lithological Model for Boundary Zone	. 14-119
Figure 14-58:	Oblique View of the Mineralized Domains of Boundary Zone	. 14-122
Figure 14-59:	Cross Section Showing the Mineralized Domains	. 14-123
Figure 14-60:	Scatterplot of Zinc Compared to Germanium Within Boundary Zone	. 14-133
Figure 14-61:	Histogram of the Assay Interval Lengths Within the Mineralization Domains for Boundary Zone	. 14-135
Figure 14-62:	Zinc Downhole Semi-Variogram for the BZPZ Domain	. 14-143
Figure 14-63:	Zinc Major Direction Semi-Variogram for the BZPZ Domain	. 14-143
Figure 14-64:	Zinc Semi-Major Direction Semi-Variogram for the BZPZ Domain	. 14-144
Figure 14-65:	Zinc Minor Direction Semi-Variogram for the BZPZ Domain	. 14-144
Figure 14-66:	Block Versus Drill Hole Composite ZnEq Grades, Section 422,200 E	. 14-149
Figure 14-67:	Block Versus Drill Hole Composite ZnEq Grades, Section 422,250 E	. 14-150
Figure 14-68:	Swath Plots for Zinc (%)	. 14-155
Figure 14-69:	Swath Plots for Lead (%)	. 14-158
Figure 14-70:	Swath Plots for Silver (g/t)	. 14-161
Figure 14-71:	Tom Sensitivity	. 14-170
Figure 14-72:	Jason Sensitivity	. 14-171
Figure 14-73:	Boundary Zone Sensitivity	. 14-172
Figure 14-74:	Tom Resource – ZnEq% [1,450 MASL]	. 14-175
Figure 14-75:	Tom Resource – ZnEq%	. 14-176
Figure 14-76:	Tom Tonnage per Vertical Increment	. 14-178
Figure 14-77:	Tom Zinc Grade per Vertical Increment)	. 14-179
Figure 14-78:	Tom Lead Grade per Vertical Increment	. 14-180
Figure 14-79:	Tom Silver Grade per Vertical Increment	. 14-181
Figure 14-80:	Tom C\$NSR/t per Vertical Increment	. 14-182
Figure 14-81:	Jason Resource – ZnEq% [1,120 MASL]	. 14-186
Figure 14-82:	Jason Resource – ZnEq%	. 14-187
Figure 14-83:	End Zone Resource – ZnEq% [1,350 MASL]	. 14-188
Figure 14-84:	End Zone Resource – ZnEq%	. 14-189
Figure 14-85:	Jason Tonnage per Vertical Increment	. 14-191
Figure 14-86:	Jason Zinc Grade per Vertical Increment	. 14-192

: Jason Lead Grade per Vertical Increment	14-193
: Jason Silver Grade per Vertical Increment	14-194
: Jason C\$NSR/t per Vertical Increment	14-195
: End Zone Tonnage per Vertical Increment)	14-196
: End Zone Zinc Grade per Vertical Increment	14-197
: End Zone Lead Grade per Vertical Increment	14-198
: End Zone Silver Grade per Vertical Increment	14-199
: End Zone C\$NSR/t per Vertical Increment	14-200
: Boundary Zone Resource – ZnEq% [1,080 MASL]	14-204
: Boundary Zone Resource – ZnEq%	14-205
Boundary Zone Tonnage per Vertical Increment	14-207
: Boundary Zone Zinc Grade per Vertical Increment	14-208
: Boundary Zone Lead grade per Vertical Increment	14-209
0:Boundary Zone Silver Grade per Vertical Increment	14-210
1:Boundary Zone C\$NSR/t per Vertical Increment	14-211
Location of Adjacent Mactung and Rogue Properties	23-3
	 Jason Silver Grade per Vertical Increment

1.0 Summary

1.1 Executive Summary

SLR Consulting (Canada) Ltd. (SLR) was retained by Fireweed Metals Corp. (Fireweed) to prepare an independent Technical Report on the Macpass Project (Macpass, or the Project, previously known as the Macmillan Pass Project), located in Yukon, Canada. The purpose of this Technical Report is to support the disclosure of the Mineral Resource estimate as of September 4, 2024. This Technical Report has been prepared in accordance with NI 43-101 Standards of Disclosure for Mineral Projects. An SLR Qualified Person (QP) visited the Project on September 15-17, 2022.

Fireweed is a publicly traded mineral exploration company focused on advancing critical mineral projects in Canada. The company is developing three key projects: the 100%-owned Macpass Project in Yukon; the 100%-owned Mactung Project located on the Yukon-Northwest Territories border; and the Gayna Property in the Northwest Territories, staked by Fireweed in 2022.

Fireweed is part of the Lundin Group of Companies. It is listed on the TSX Venture Exchange (TSXV: FWZ) in Canada, the OTCQB Venture Market (FWEDF) in the U.S., and trades on the Frankfurt Stock Exchange in Europe (FSE: M0G).

The Macpass Project is located in eastern Yukon near the Northwest Territories border. Covering 940 km², it includes several key zinc-lead-silver deposits: Tom, Jason, End Zone and Boundary Zone. The Project is at an advanced exploration stage, though historical underground exploration drilling and bulk sampling have been carried out at Tom.

The Tom and Jason deposits are notable for their high-grade, sediment-hosted zinc-lead-silver mineralization, where layers of pyrite, sphalerite, and galena transition into semi-massive and massive sulphide zones. The Tom deposit also serves as the Project's logistical center, benefiting from road access and a nearby airstrip. Boundary Zone, which has become a focus of the Project due to promising recent exploration results, features similar stratiform mineralization, along with replacement and vein-style deposits that further enhance its zinc potential. The End Zone, located 3.5 km northwest of Jason, also contains high-grade mineralization, further contributing to the overall resource potential of the Macpass Project.

Table 1-1 summarizes Fireweed's Mineral Resource estimates for Zn, Pb, and Ag, effective as of September 4, 2024.

Class	Area	Grade				Metal			
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)
Indicated	Tom	17.52	9.90	6.30	3.34	32.9	2,435	1,291	18.56
	Jason	3.80	9.09	7.62	1.86	1.7	638	156	0.21
	End Zone	0.34	16.15	3.81	12.32	86.2	29	93	0.95
	Boundary	34.32	5.63	4.86	0.55	21.6	3,682	412	23.83
Total Indicated		55.98	7.27	5.50	1.58	24.2	6,784	1,952	43.54

Table 1-1: Open Pit and Underground Mineral Resource Estimate, September 4, 2024

Class	Area	Mass	Grade				Metal		
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)
Inferred	Tom	18.94	9.10	6.56	2.30	25.2	2,738	960	15.37
	Jason	11.65	10.40	5.48	4.33	48.2	1,407	1,112	18.05
	End Zone	0.44	8.76	1.86	6.88	48.1	18	67	0.68
	Boundary	17.43	3.75	3.48	0.23	9.5	1,337	87	5.32
Total Inferred		48.46	7.48	5.15	2.08	25.3	5,500	2,226	39.42

Notes:

1. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards for Mineral Resources and Mineral Reserves (CIM (2014) definitions) were used for Mineral Resource classification.

2. g/t: grams per tonne; Mlb: million pounds; Moz: million troy ounces; Mt: million metric tonnes.

3. Mineral Resources are reported within conceptual open pit (OP) shells and underground (UG) mining volumes to demonstrate Reasonable Prospects for Eventual Economic Extraction (RPEEE), as required under NI 43-101; mineralization lying outside of the OP shell or UG volumes is not reported as a Mineral Resource. Note the conceptual OP shell and UG volumes are used for Mineral Resource reporting purposes only and are not indicative of the proposed mining method; future mining studies may consider UG mining, OP mining, or a combination of both. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability.

4. All quantities are rounded to the appropriate number of significant figures; consequently, sums may not add up due to rounding.

5. The densities for each deposit were estimated using collected density measurements. When density measurements were unavailable but analytical results were present, a regression method was applied.

Open pit Mineral Resources are reported at a pit wall angle of 45°, Revenue Factors of 0.8 (Tom, End Zone), 0.6 (Jason), 1.0 (Boundary Zone), and net smelter return (NSR) cut-off of C\$30/tonne (t).

7. Underground Mineral Resources are constrained within reporting panels with heights (H) of 20 m, lengths (L) of 10 m, with 10 m H and 5 m L sub-shapes and minimum widths of 2 m at Tom, Jason, and End Zone; and 20 m H by 20 m L with 10 m sub-shapes and a minimum width of 5 m at Boundary Zone, using an average panel NSR cut-off of C\$112/t.

 NSR block values and zinc equivalency are based on metal prices of US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Ag, C\$:US\$ exchange rate of 1.32, and a number of operating cost and recovery assumptions specific to each deposit or mineralization domain.

 ZnEq has been calculated on a block-by-block basis using the NSR calculation and input parameters related to each deposit or mineralization domain. For reporting subtotals and totals, ZnEq values have been calculated using the mass weighted average of the ZnEq block values of each respective domain for its respective classification category within OP and UG reporting volumes.

- 10. The effective date of the MRE is September 4, 2024, and the MRE is based on all drilling data up to and including holes drilled in 2023 with a final database cut-off date of June 23, 2024. The MRE does not include any data from holes drilled in 2024.
- 11. Inferred Mineral Resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as Mineral Reserves. There is also no certainty that these Inferred Mineral Resources will be converted to the Measured and Indicated categories through further drilling, or into Mineral Reserves, once economic considerations are applied. The Inferred Mineral Resource in this estimate has a lower level of confidence than that applied to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of the Inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

This Technical Report also supports the disclosure of a Mineral Resource estimate as of October 17, 2024 for the by-product minerals, gallium and germanium.

The SLR QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimate.

1.1.1 Conclusions

1.1.1.1 Geology and Mineral Resources

- The Mineral Resources for the Macpass Project comprise four distinct deposits: Tom, Jason, End Zone, and Boundary Zone.
- The deposit type at the Macpass Project can be broadly described as stratiform, stratabound, sediment-hosted zinc-lead-silver-barite deposits.
- The current Mineral Resource estimate includes the initial disclosure of technical supporting information for the Boundary Zone deposit Resources.
- The current Mineral Resource estimate also includes Fireweed's first-time disclosure of technical supporting information for the End Zone deposit Resources.
- The total combined Mineral Resources of the four deposits comprising the Macpass Project are estimated to total approximately 55.98 Mt at 7.27% Zinc Equivalent (ZnEq) (5.50% zinc, 1.58% lead, and 24.2 g/t silver) in the Indicated Mineral Resource category and approximately 48.46 Mt at 7.48% ZnEq (5.15% zinc, 2.08% lead, and 25.3 g/t silver) in the Inferred Mineral Resource category.

1.1.1.2 Mineral Processing and Metallurgical Testing

- The most recent metallurgical test program on Tom and Jason was completed in 2018. The 2018 test program was carried out at Base Metallurgical Laboratories Ltd. (Base Met) in Kamloops, British Columbia (Project No. BL0236) and evaluated both the Tom and Jason deposits. An earlier test program, conducted in 2012 by G&T Metallurgical Services in Kamloops, British Columbia focused solely on Tom.
- In 2022, an initial investigation was completed on Boundary Zone (BL0755) and in 2023 on Boundary Zone Massive Sulphides (BL1140). The test programs included comminution, mineralogy, and flotation. Open circuit tests were completed on all of the samples with a focus on producing zinc concentrates.
- Tom and Jason and Boundary Zone material follows a similar flowsheet that includes comminution and sequential flotation to produce saleable concentrates. The Tom and Jason flowsheet includes a primary grind targeting 80% passing (P₈₀) 50 microns, lead flotation to produce a concentrate followed by zinc flotation to produce a zinc concentrate. Boundary Zone will utilize the same flowsheet with a coarser primary grind P₈₀ of 75 microns with either lead flotation to produce a lead concentrate or pre-float utilizing the lead rougher circuit to reduce the carbon in the feed to the zinc flotation circuit. The target regrind for lead and zinc for all zones was targeted at P₈₀ of 15 microns and 25 microns, respectively.
- The inductively coupled plasma (ICP) analysis of the concentrates indicated that silica may be a potential penalty element at Tom and Jason. The Boundary Zone samples had elevated levels of cadmium, mercury, and antimony that may incur penalties and may require blending to reduce the amounts in the zinc concentrate.
- To reflect a conceptual mine plan, a ratio of 65% Tom composite and 35% Jason composite were used to create the Tom & Jason (T&J) composite. The results from the T&J composite locked cycle tests (LCTs) reported a lead grade of 61.5% Pb with a recovery of 75%. The zinc concentrate graded 58.4% Zn with an 89% recovery.

An average of the open circuit flotation tests completed on Boundary Zone material produced a lead concentrate grade of 41.8% Pb recovering 52% (only two samples had lead head grades high enough to produce a concentrate) and 81% Zn was recovered to the zinc concentrate with a grade of 54.8%. A lead concentrate was produced for Boundary Zone massive sulphide domain for sample NB21-001-MS-001 which produced a lead grade of 41.6% Pb at a recovery of 30.4%. The average of the Boundary Zone massive sulphide open circuit zinc flotation tests completed on the two composites reported a grade and recovery of 51.0% Zn and 84%, respectively.

1.1.2 Recommendations

1.1.2.1 Geology and Mineral Resources

- 1. Continue to adopt a balanced approach to evaluating resource expansion targets, weighing the costs and benefits of near-surface opportunities at Boundary Zone while considering the deeper potential at Tom and Jason.
- 2. Continue to explore fault offsets at Boundary Zone to better quantify the shape and extent of massive to semi-massive sulphide mineralization in the BZUZ and BZPZ zones.
- 3. Drill strike extensions to the northwest and at depth at Boundary Zone, focusing on followups to holes NB21-003, NB21-004, NB23-029, and NB20-009.
- 4. Consider drilling deeper holes at Tom West and Tom Southeast to explore the potential for mineralization expansion at depth.
- 5. Consider conducting additional drilling at Jason South, targeting down-dip extensions and target faulted areas within the Jason South deposit to improve the understanding of fault positions and mineralization offsets.
- 6. Consider twinning historical drill holes in mineralized areas where zinc, lead, or silver assays were not previously conducted, or where core loss occurred due to soft sulphides, to enhance data quality and improve confidence in local grade estimates.
- 7. Continuously review slope angles as new data is collected to ensure that parameters reflect any changes in geological and geotechnical conditions. This review should incorporate rock quality designation (RQD) data from new drilling, insights from geological modelling that identify new faults, and findings from completed geotechnical drilling or studies.
- 8. Continue assaying potential penalty elements alongside primary payable elements to enable their future integration into the resource estimation workflow. This will support ongoing metallurgical test work and enhance understanding of the various mineralization styles at the Macpass Project.
- 9. Ensure sufficient sample drying time prior to conducting density measurements to maintain the accuracy of the results.

The SLR QP notes that as of the effective date of this Technical Report, many of the exploration recommendations have been addressed during the summer 2024 drill program at the Macpass Project, which included over 16,013 m of drilling across 49 holes. The drilling targeted step-out areas at known zones, including Tom, Jason, and Boundary Zone, as well as new regional targets. In addition to drilling, the 2024 budget supported a comprehensive regional exploration program, involving ground gravity surveys, prospecting, soil sampling, and airborne geophysical surveys utilizing LiDAR and VTEM-magnetics. Data from these activities will be analyzed in the coming months to guide future exploration efforts and establish the detailed 2025 budget.

Fireweed anticipates that the 2025 drilling campaign will be approximately 20,000 m of diamond drilling with a preliminary budget of \$22M. Fireweed has also initiated a geometallurgical test program to better characterize the metallurgical variability of the mineralized domains at the Tom, Jason, End Zone, and Boundary Zone deposits with all results currently pending.

1.1.2.2 Mineral Processing and Metallurgical Testing

- 1. Conduct chemical analysis and mineral textural review of variability samples selected from Tom, Jason, End Zone, and Boundary Zone. The samples are to be discrete continuous intervals of drill core that are spatially representative based on the areas to be mined and provide variability in grade.
- 2. Create global composites from the variability samples for flowsheet validation and optimization.
- 3. Run the variability samples through the optimized flowsheet to provide additional confidence in the metallurgical response of the mineralized zones. The samples will be subjected to mineralogy, comminution test work, and flotation tests including LCTs.
- 4. Include dewatering tests to assess settling and filtration properties as well as tailings generation for physical and chemical evaluation.

1.2 Technical Summary

1.2.1 Property Description and Location

The Macpass Project is located in eastern Yukon, Canada, near the Northwest Territories border at latitude 63°10'N and longitude 130°09'W on NTS map sheet 1050. The property is approximately 200 km northeast of Ross River, the nearest community, and 400 km northeast of Whitehorse, Yukon's capital city, which serves as a regional supply and service centre and has an international airport.

1.2.2 Land Tenure

The Macpass Project property comprises 4,708 mineral (quartz) claims and 144 mining leases, covering 940 km² within the Mayo and Watson Lake Mining Districts. The claims and leases were historically organized into various claim groups (i.e., properties once owned by different operators), which are now 100% owned by Fireweed and make up the current Macpass Project property.

1.2.3 Existing Infrastructure

A Yukon Government-maintained 780 m long gravel airstrip, the Macmillan Pass aerodrome, is located on the property 2.5 km north-northwest of the Tom deposit and supports exploration activities in the region.

Fireweed operates two 49 person camps on the Macpass Project property; Tom Camp and Sekie Camp. The camps serve as the operational hub for exploration work on the property, and include accommodation, offices, core logging facilities, helipad, and various pieces of heavy equipment and ATVs. The Sekie Camp is permitted for gradual expansion to accommodate up to 150 people as the Tom Camp is decommissioned.

There are no services available at the Project site. Electricity is generated locally by diesel generators and supported by a solar array.

An adit and underground workings, totalling 3,423 m, were excavated by Hudbay in stages between 1969 and 1982 to access the Tom West zone for bulk sampling and underground drilling.

1.2.4 History

Since the discovery of Zn-Pb-Ag mineralization at Tom in 1951, multiple owners and operators have explored different parts of the Macpass property area.

The former Tom property, which includes the Tom deposit, was held by Hudson Bay Mining and Smelting since its discovery and staking in 1951. The Jason claims were originally staked by the Ogilvie Joint Venture (Ogilvie JV) in 1974 prior to the first drilling at the Jason deposit a year later.

The present day Macpass Project property was acquired by Fireweed through option and purchase agreements from multiple owners and operators, beginning with the Tom and Jason properties claim groups optioned in 2016, and adding the surrounding claim groups between 2017 and 2022. These other claim groups include the Ben, BR, Jerry, MAC, MC, MP, NC, Nidd, NS, Oro, Sol, and Stump claims.

1.2.5 Geology and Mineralization

The Macpass Project covers three distinct deposits of sedimentary rock-hosted, stratiform zinclead-silver (Zn-Pb-Ag) mineralization including Tom, Jason, and End Zone, and one deposit containing brecciated, stratiform, and vein-hosted zinc-lead-silver mineralization at Boundary Zone. Sedimentary exhalative deposits (SEDEX), was first used in a report describing the stratiform Zn-Pb-Ag deposits of the Selwyn Basin by Carne and Cathro (1982) and for a period of time the term was used to describe these deposits worldwide, however, the term SEDEX is no longer used in favour of more descriptive and less genetic terminology.

Historically these deposits were considered to have formed strictly at the sediment-seawater interface at seafloor vents within extensional environments. The genetic model for early stratiform mineralization at Tom, Jason, End Zone, and Boundary Zone has subsequently been reinterpreted as a process involving sub-seafloor replacement of diagenetic barite and replacement of porous, poorly consolidated muddy to silty sediment (Magnall, 2020). At Boundary, this early mineralization has been overprinted by various phases of mineralization occurring as veins, breccias, and replacement features. These deposits represent structurally and stratigraphically controlled feeder-fault systems that occur on splays of the Macmillan-Hess fault system.

The sediment-hosted Zn-Pb-Ag (± Ga-Ge) deposits occur predominantly within the Portrait Lake Formation at or near the contact between the Fuller Lake Member and the Macmillan Pass Member, while mineralization at Boundary Zone occurs throughout a wide stratigraphic interval spanning sections of the Road River Group, the Portrait Lake Formation of the Earn Group, and intercalated Macmillan Pass Volcanics. The Fuller Lake Member consists of massive to thinly laminated, carbonaceous to siliceous, pyrite-rich mudstone, while the Macmillan Pass Member generally consists of interbedded black mudstone with grey siltstone and sandstone ("pinstripe mudstone") with coarse sandstone and conglomerate intervals. Carbonate-altered mafic volcanic and volcaniclastic rocks occur at several stratigraphic intervals, including within the Macmillan Pass Member, below the Niddery Lake member, and deeper, within the Road River Group.

1.2.6 Exploration Status

The Macpass Project hosts four known deposits, Tom, Jason, End Zone, and Boundary Zone. Fireweed continues to explore at and around these deposits, as well as carrying out regional exploration to identify and develop targets to drill-ready stage.

Prior to Fireweed ownership, various owners and operators completed 85,484 m of drilling in 403 historical drill holes across the property between 1952 and 2013. From this historical drilling, 80,117 m was completed in 370 historical drill holes in proximity to the Tom, Jason, End Zone, and Boundary Zone deposits that are the subject of this Technical Report.

Between the 2018 Mineral Resource Estimate (MRE) and end of the 2023 drill season, Fireweed completed an additional 43,902 m of drilling in 174 drill holes. Of this, 42,311 m were in 160 holes in deposit areas and used to inform the present MRE. The remaining drilling totalling 1,590 m in 14 drill holes tested regional targets away from deposits.

Since acquiring the Macpass Project in 2017, Fireweed has continued to explore at and around known deposit areas, as well as across the broader property. A particular focus has been along a northwest-trending "prospective corridor" based on favourable geology as well as geophysical and geochemical anomalies. Exploration work has included surficial and bedrock mapping, prospecting, rock and soil geochemistry, ground gravity surveying, and airborne geophysical surveying and LiDAR topographic mapping. This work builds on historical exploration work completed by previous owners and operators and provincial and federal government geological surveys.

During the 2020 drill season, Fireweed discovered stratiform laminated mineralization at Boundary Zone in Cambrian-Ordovician Road River host rocks. Prior to this discovery, Zn-Pb-Ag mineralization had only been observed in younger Devonian-Mississippian Earn Group host rocks at Macpass. The discovery has expanded the search space for Zn-Pb-Ag mineralization across the property, as areas of Road River sedimentary rocks had not previously been considered prospective.

Fireweed continues to interpret and integrate exploration datasets to identify new targets and evaluate existing targets to advance them to drill-ready prospects while working towards new discoveries.

1.2.7 Mineral Resources

The Mineral Resource estimates for the Macpass Project include updates of the previous Mineral Resource estimates for the Tom and Jason deposits. The current Mineral Resource estimate includes, for the first time, the methods used to prepare the Mineral Resource estimate for the End Zone and the newly discovered Boundary Zone deposits. The End Zone deposit is located approximately 3.5 km northwest of the Jason Deposit, and the Boundary Zone deposit is located approximately 15 km northwest of the Jason Deposit.

The Mineral Resource estimate for the Macpass Project is supported by a comprehensive set of data inputs, including drilling data, assay results, bulk density measurements, geological modelling, estimation parameters, and net smelter return (NSR) calculations. The drilling data includes results from both historical campaigns and recent drilling efforts up to June 23, 2024.

CIM (2014) definitions have been used for classification of Mineral Resources and the Mineral Resource estimate has been independently validated by SLR. Pierre Landry, P.Geo., of SLR, a Qualified Person as defined by NI 43-101, is responsible for the Macpass Mineral Resource Estimate and maintains independence from Fireweed.

The total combined Mineral Resources of the four deposits comprising the Macpass Project are estimated to be approximately 55.98 Mt at 7.27% zinc equivalent (5.50% zinc, 1.58% lead, and 24.2 g/t silver) in the Indicated Mineral Resource category, and approximately 48.46 Mt at 7.48% zinc equivalent (5.15% zinc, 2.08% lead, and 25.3 g/t silver) in the Inferred Mineral Resource category. Open pit Mineral Resources are calculated with a pit wall angle of 45°, revenue factors between 0.6 and 1.0, and a NSR cut-off of C\$30/tonne, while underground Mineral Resources use specific reporting panel dimensions and a C\$112/t average NSR cut-off. NSR values and zinc equivalency consider a US\$1.40/lb zinc price, a US\$1.10/lb lead price, a US\$25/oz silver price, and a CAD exchange rate of 1.32, with other assumptions detailed in Table 1-1. Prices are in Canadian dollars unless specified otherwise.

By-product elements germanium and gallium have also been estimated for the Macpass Project. The total combined germanium and gallium Mineral Resources of the Macpass Project are estimated to be approximately 55.98 Mt at 10.98 g/t germanium, 7.38 g/t gallium in the Indicated Mineral Resource category, and approximately 48.46 Mt at 8.14 g/t germanium, 5.82 g/t gallium in the Inferred Mineral Resource category. Gallium and germanium do not contribute any value as payable metals or smelter credits in the NSR calculations used to define the zinc, lead, and silver Mineral Resource, as shown in Table 1-1. Accordingly, they do not contribute to the RPEEE associated with resource category classification

The technical disclosure related to the four deposits described herein – the Tom, Jason, End Zone, and Boundary Zone deposits — have a variety of dates supporting the disclosure of Mineral Resources. A summary of these dates is provided below.

- Technical Report:
 - o Effective date: October 17, 2024
- Tom, Jason, End Zone and Boundary Zone:
 - Drill hole database date: June 23, 2024 (The MRE does not include any data from holes drilled in 2024.)
 - Mineral Resource Estimate reporting date (zinc, lead, and silver) September 4, 2024.
 - By-product elements estimate reporting date (germanium and gallium) October 17, 2024.

1.2.8 Mineral Processing and Metallurgical Testing

The most recent metallurgical test program on Tom and Jason was completed in 2018. The 2018 test program was carried out at Base Metallurgical Laboratories Ltd. (Base Met) in Kamloops, British Columbia (Project No. BL0236). An earlier test program, conducted in 2012 by G&T Metallurgical Services in Kamloops, British Columbia focused solely on Tom.

In 2022, an initial investigation was completed on Boundary Zone (BL0755) and in 2023 on Boundary Zone Massive Sulphides (BL1140). The test programs included comminution, mineralogy, and flotation. Open circuit tests were completed on all of the samples with a focus on producing zinc concentrates.

Tom and Jason and Boundary Zone material follows a similar flowsheet that includes comminution and sequential flotation to produce saleable concentrates. The Tom and Jason flowsheet includes a primary grind targeting 80% passing (P_{80}) 50 microns, lead flotation to produce a concentrate followed by zinc flotation to produce a zinc concentrate. Boundary Zone will utilize the same flowsheet with a coarser primary grind P_{80} of 75 microns with either lead flotation to produce a lead concentrate or pre-float utilizing the lead rougher circuit to reduce the

carbon in the feed to the zinc flotation circuit. The target regrind for lead and zinc for all zones was targeted at P_{80} of 15 microns and 25 microns, respectively.

The inductively coupled plasma (ICP) analysis of the concentrates indicated that silica may be a potential penalty element in Tom and Jason. The Boundary Zone samples had elevated levels of cadmium, mercury, and antimony that may incur penalties and may require blending to reduce the amounts in the zinc concentrate.

To reflect a conceptual mine plan, a ratio of 65% Tom composite and 35% Jason composite were used to create the Tom & Jason (T&J) composite. The results from the T&J composite locked cycle tests (LCTs) reported a lead grade of 61.5% Pb with a recovery of 75%. The zinc concentrate graded 58.4% Zn with an 89% recovery.

An average of the open circuit flotation tests completed on Boundary Zone material produced a lead concentrate grade of 41.8% Pb recovering 52% (only two samples had lead head grades high enough to produce a concentrate) and 81% Zn was recovered to the zinc concentrate with a grade of 54.8%. A lead concentrate was produced for Boundary Zone massive sulphide domain for sample NB21-001-MS-001 which produced a lead grade of 41.6% Pb at a recovery of 30.4%. The average of the Boundary Zone massive sulphide open circuit zinc flotation tests completed on the two composites reported a grade and recovery of 51.0% Zn and 84%, respectively.

2.0 Introduction

SLR Consulting (Canada) Ltd. (SLR) was retained by Fireweed Metals Corp. (Fireweed) to prepare an independent Technical Report on the Macpass Project (Macpass, or the Project, previously known as the Macmillan Pass Project), located in Yukon, Canada. The purpose of this Technical Report is to support the disclosure of the Mineral Resources as of September 4, 2024. This Technical Report also supports the disclosure of a Mineral Resource estimate as of October 17, 2024, for the by-product minerals, gallium and germanium. This Technical Report has been prepared in accordance with NI 43-101 Standards of Disclosure for Mineral Projects. An SLR Qualified Person (QP) visited the Project on September 15-17, 2022.

Fireweed is a publicly traded mineral exploration company focused on advancing critical mineral projects in Canada. The company is developing three key projects: the 100%-owned Macpass Project in Yukon; the 100%-owned Mactung Project located on the Yukon-Northwest Territories border; and the Gayna Property in the Northwest Territories, staked by Fireweed in 2022.

Fireweed is part of the Lundin Group of Companies. It is listed on the TSX Venture Exchange (TSXV: FWZ) in Canada, the OTCQB Venture Market (FWEDF) in the U.S., and trades on the Frankfurt Stock Exchange in Europe (FSE: M0G).

The Macpass Project is located in eastern Yukon near the Northwest Territories border. Covering 940 km², it includes several key zinc-lead-silver deposits: Tom, Jason, End Zone, and Boundary Zone. The Project is in an advanced exploration stage, though historical underground bulk sampling and exploration drilling have been carried out at Tom.

The Tom and Jason deposits are notable for their high-grade, sediment-hosted zinc-lead-silver mineralization, where layers of pyrite, sphalerite, and galena transition into semi-massive and massive sulphide zones. The Tom Deposit also serves as the Project's logistical center, benefiting from road access and a nearby airstrip. Boundary Zone, which has become a focus of the Project due to promising recent exploration results, features similar stratiform mineralization, along with replacement and vein-style deposits that further enhance its zinc potential. The End Zone, located 3.5 km northwest of Jason, also contains high-grade mineralization, further contributing to the overall resource potential of the Macpass Project.

2.1 Sources of Information

SLR's site visit to the Macpass Project was conducted by Pierre Landry, P.Geo., from September 15 to 17, 2022. During this visit, Mr. Landry inspected key facilities, including the core shack and core scanning workspace, and reviewed the procedures for logging, sampling, and data collection. He also examined core samples from Tom, Jason, End Zone, and Boundary Zone, verified drill collar locations using a handheld GPS, and compared the observed mineralization with the interpreted drilling sections. During the site visit, Mr. Landry was accompanied by Dr. Jack Milton, Fireweed's Vice President, Geology.

Chelsea Hamilton, P.Eng. contributed to the cut-off grade inputs for net smelter return (NSR) and zinc equivalent (ZnEq) calculations. She was also responsible for both open pit and underground mine optimization and sensitivity analysis.

Kelly McLeod, P.Eng. managed and supervised the metallurgical test work programs.

During preparation of the Mineral Resource estimate, discussions were held with the following personnel from Fireweed.

- Jack Milton, P.Geo., Vice President of Geology, Fireweed
- Kelly Bateman, P.Geo., Director of Studies, Fireweed
- Moira Cruickshanks, P.Geo., Director, Technical Services, Fireweed
- Ian Carr, P.Geo., Senior Geologist, Fireweed
- Stéphane Poitras, P.Geo., Project Geologist, Fireweed
- Kaitie Purdue, GIT, Project Geologist, Fireweed
- Quinton Willms, GIT, Project Geologist, Fireweed
- Greg Ashcroft, GIT, Data Manager, Fireweed

This Technical Report was prepared by Qualified Persons (QPs) Pierre Landry, P.Geo., Chelsea Hamilton, P.Eng., and Kelly S. McLeod, P.Eng. Additionally, contributions were made by Logan Behuniak, P.Geo., Volker Moeller, P.Geo., Humbert Sin, P.Eng., and Maria Campos, P.Geo.. The specific responsibilities of the Qualified Persons are outlined in Table 2-1 of the report.

Table 2-1:	Qualified Persons and Responsibilities
------------	--

QP, Designation, Title	Company	Responsible for
Pierre Landry, P.Geo., Managing Principal Resource Geologist, Valuations Lead and Team Lead – Resource Geology	SLR	Overall report preparation and all sections exclusive of 13, 14.6, and related subsections in 1, 25, and 26.
Chelsea Hamilton, P.Eng., Senior Mining Engineer	SLR	Section 14.6 and related content in subsections 1.1.1.1, 1.1.2.1, 1.2.7, 25.1, and 26.1.
Kelly S. McLeod, P.Eng., President	K-Met Consultants Inc.	Section 13 and subsections 1.1.1.2, 1.1.2.2, 1.2.8, 25.2, and 26.2.

The documentation reviewed, and other sources of information, are listed at the end of this Technical Report in Section 27 References.

2.2 List of Abbreviations

Units of measurement used in this Technical Report conform to the metric system. All currency in this Technical Report is Canadian dollars (C\$) unless otherwise noted.

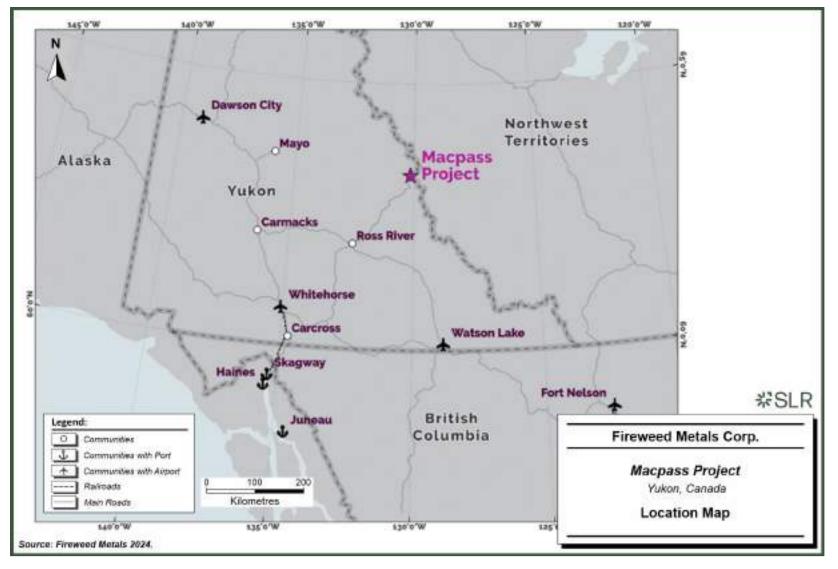
μ	micron	kVA	kilovolt-amperes
μg	microgram	kW	kilowatt
a	annum	kWh	kilowatt-hour
A	Ampere	L	litre
bbl	barrels	lb	pound
Btu	British thermal units	L/s	litres per second
°C	degree Celsius	m	metre
C\$	Canadian dollars	М	mega (million); molar
cal	calorie	m ²	square metre
cfm	cubic feet per minute	m ³	cubic metre
cm	centimetre	MASL	metres above sea level
cm ²	square centimetre	m³/h	cubic metres per hour
d	day	mi	mile
dia	diameter	min	minute
dmt	dry metric tonne	μm	micrometre
dwt	dead-weight ton	mm	millimetre
°F	degree Fahrenheit	mph	miles per hour
ft	foot	MVA	megavolt-amperes
ft ²	square foot	MW	megawatt
ft ³	cubic foot	MWh	megawatt-hour
ft/s	foot per second	oz	Troy ounce (31.1035g)
g	gram	oz/st, opt	ounce per short ton
G	giga (billion)	ppb	part per billion
Gal	Imperial gallon	ppm	part per million
g/L	gram per litre	psia	pound per square inch absolute
Gpm	Imperial gallons per minute	psig	pound per square inch gauge
g/t	gram per tonne	RL	relative elevation
gr/ft ³	grain per cubic foot	S	second
gr/m ³	grain per cubic metre	st	short ton
ha	hectare	stpa	short ton per year
hp	horsepower	stpd	short ton per day
hr	hour	t	metric tonne
Hz	hertz	tpa	metric tonne per year
in.	inch	tpd	metric tonne per day
in ²	square inch	US\$	United States dollar
J	joule	USg	United States gallon
k	kilo (thousand)	USgpm	US gallon per minute
kcal	kilocalorie	V	volt
kg	kilogram	W	watt
km	kilometre	wmt	wet metric tonne
km²	square kilometre	wt%	weight percent
km/h kPa	kilometre per hour	yd ³	cubic yard
rгa	kilopascal	yr	year

3.0 Reliance on Other Experts

This Technical Report has been prepared by SLR for Fireweed. The information, conclusions, opinions, and estimates contained herein are based on:

- Information available to SLR at the time of preparation of this Technical Report.
- Assumptions, conditions, and qualifications as set forth in this Technical Report.

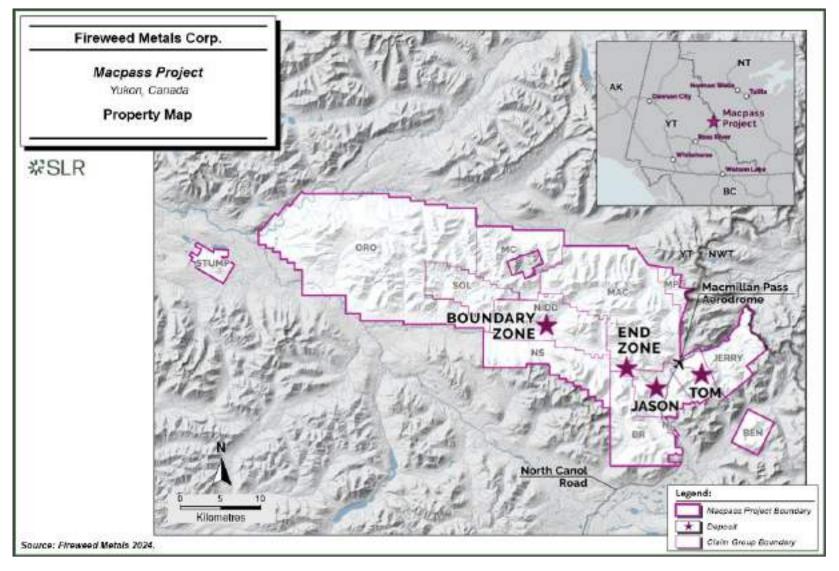
For the purpose of this Technical Report, the SLR QP has relied on a list of claims and ownership and royalty information provided by Fireweed. The SLR QP considers it reasonable to rely on Fireweed who is responsible for maintaining this information. The SLR QP conducted a review of the quartz claims held by Fireweed that encompass the MacPass Project (Table 4-1) using the Yukon government's mining claims online database and found all claims to be active and in good standing.


The SLR QP has taken all appropriate steps, in their professional opinion, to ensure that the above information from Fireweed is sound.

4.0 **Property Description and Location**

4.1 Location

The Macpass Project is located in eastern Yukon, Canada, near the Northwest Territories border (Figure 4-1) at latitude 63°10'N and longitude 130°09'W on NTS map sheet 105O. The property is approximately 200 km northeast of Ross River, the nearest community, and 400 km northeast of Whitehorse, Yukon's capital city, which serves as a regional supply and service centre and has an international airport.



4.2 Land Tenure

The Macpass Project property comprises 4,708 mineral (quartz) claims and 144 mining leases, covering 940 km² and spans the Mayo and Watson Lake Mining Districts (Figure 4-2, Appendix 1). The claims and leases were historically organized into various claim groups (i.e., properties once owned by different operators), which are now 100% owned by Fireweed and make up the current Macpass Project property. Historical claim groups within the Macpass Project property are listed in Table 4-1, along with current expiry dates. All claims and leases can be extended.

Claims can be extended by carrying out work such as drilling, mapping, or surveying as described under the *Yukon Quartz Mining Act* or by paying \$100 per claim per year in lieu of such work. Work must be performed on every claim unless groupings are filed. An application can be made to group adjoining claims; the maximum number of claims per group is 750. Grouping allows work to be performed on one or more claims and can be distributed to any or all other claims in the group. In recent years, these work requirements and fees have been waived by the Yukon Government as the property is within an area withdrawn from staking, and good-to dates are automatically extended each year by one to two years. Fireweed has elected to continue filing work to extend claim expiry dates and ensure claims remain in good standing well into the future.

Figure 4-2: Property Map

Historical Claim Group	Туре	Count	Earliest Good To	Latest Good To	Deposit
Tom	Leases	144	2039-10-12	2039-10-12	Tom
Total Leases		144			
Ben	Claims	80	2032-04-15	2032-04-15	
BR	Claims	326	2032-12-03	2032-12-03	
Jason	Claims	283	2038-12-31	2042-12-03	Jason, End Zone
Jerry	Claims	217	2028-04-07	2030-04-07	
MAC	Claims	820	2041-12-03	2042-12-03	
MC	Claims	333	2034-12-03	2036-12-03	
MP	Claims	74	2037-12-03	2039-12-03	
NC	Claims	7	2031-06-06	2031-06-06	
Nidd	Claims	373	2041-12-03	2044-12-03	Boundary Zone
NS	Claims	333	2036-12-03	2036-12-03	
Oro	Claims	1582	2033-12-03	2044-12-03	
Sol	Claims	209	2027-12-03	2039-12-03	
Stump	Claims	71	2028-04-06	2028-04-13	
Total Claims		4,708			

 Table 4-1:
 Historical Claim Groups of the Macpass Property

4.3 **Property Agreements and Royalties**

All of the Macpass Project claims and Tom mining leases are 100% owned by Fireweed. Royalty, right of first refusal, and payment agreements for distinct claim blocks acquired from previous owners between 2016 and 2022 are described below and summarized in Figure 4-3.

4.3.1 Tom and Jason Claim Groups

Fireweed holds 100% interest in the 144 leases and 283 claims of the Tom and Jason claim groups. The Jason claim group has a third party underlying 3% NSR royalty that can be bought out at any time for C\$5,250,000. There are no underlying royalties on the Tom claim group. The Tom deposit is hosted within the Tom claim group and the Jason and End Zone deposits are hosted within the Jason claim group. The Jason deposit is located approximately five kilometres west of the Tom deposit and the End Zone deposit is located approximately 3.5 km northwest of the Jason Deposit.

4.3.2 Nidd Claim Group

Fireweed holds 100% interest in the 373 claims of the Nidd claim group, where the Boundary Zone deposit is located. Teck Resources Limited (Teck) retained a 1% NSR royalty and a right of first offer to purchase future production concentrates from the Nidd claims. The Boundary Zone deposit is hosted within the Nidd claim group. The Boundary Zone deposit is located approximately 15 km northwest of the Jason Deposit.

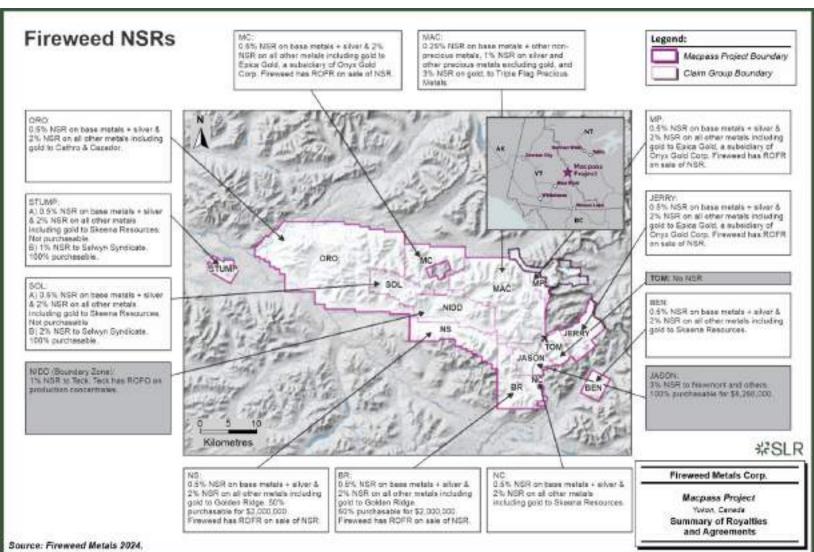
4.3.3 MC, MP, and Jerry Claim Groups

Fireweed holds 100% interest in the 333 MC, 74 MP, and 217 Jerry claims. Vendors Epica Gold Inc. (Epica) and Carlin Gold Corporation (Carlin) together retained production royalties of 0.5% NSR on base metals and silver, and 2% NSR on all other metals including gold produced from the MC, MP, and Jerry claims, and are entitled to one additional payment of C\$750,000 or equivalent in, as Fireweed elects, upon receiving a resource calculation of at least two million tonnes of Indicated (or better) Resource on any part of the MC, MP, or Jerry claim groups. Fireweed maintains a right of first refusal on the sale of any NSR royalty from these claims by Epica and/or Carlin. As of September 2022, Epica became a subsidiary company of Onyx Gold Corp.

4.3.4 NS and BR Claim Groups

Fireweed holds 100% interest in the 326 claims in the BR claim group and 333 claims in the NS claim group. Vendor Golden Ridge Resources Ltd. (Golden Ridge) retained production royalties of 0.5% NSR on base metals and silver, and 2% NSR on all other metals including gold produced from the BR and NS claim groups, and is entitled to one additional payment of C\$750,000 or equivalent in Fireweed shares at Fireweed's option, upon receiving a resource calculation of at least two million tonnes of Indicated (or better) Resource on any part of the BR or NS claim groups. Fireweed has the right to purchase one half of these NSR royalties for C\$2,000,000 at any time prior to the commencement of commercial production. Fireweed maintains a right of first refusal on the sale of any NSR royalty from these claims by Golden Ridge. There is also a pre-existing third party 3% NSR royalty on any future cobalt production from the BR and NS claim groups.

4.3.5 MAC Claim Group


Fireweed holds 100% interest in the 820 claims of the MAC claim group. Triple Flag Precious Metals Corp. holds production royalties of 0.25% NSR on base metals and other non-precious minerals, 1% NSR on silver and other precious metals excluding gold, and 3% NSR on gold produced from the MAC claims.

4.3.6 Sol, Stump, Ben, and NC Claim Groups

Fireweed holds 100% interest in the 367 claims from the Sol claim group and several small nearby separate claim groups (Ben, NC, Stump). Vendor QuestEx Gold & Copper Ltd (QuestEx) retained production royalties of 0.5% NSR on all base metals and silver, and 2% NSR on all other metals including gold, which may be mined from these claims. There is an additional third party royalty consisting of a 2% NSR on production from the Sol and Stump claims of which 1% may be extinguished for C\$2,000,000. On June 1, 2022, QuestEx was acquired by and became a subsidiary company of Skeena Resources Ltd.

4.3.7 Oro Claim Group

Fireweed holds 100% interest in the 1,582 claims in the Oro claim group that form the western extension of the Macpass property. Vendors Cathro Resources Corporation (Cathro Resources) and Cazador Resources Ltd. together retained a 0.5% NSR production royalty on all base metals and silver, and 2% NSR on all other metals including gold, which may be mined from the Oro claims.

4.4 Environmental Liabilities

Hudson Bay Mining and Smelting (Hudbay) excavated an adit and underground workings between 1969 and 1982 to access the Tom West zone, a part of the Tom deposit, for bulk sampling and underground drilling. The adit was partially plugged in 2010 to flood the workings and reduce flow of acid rock drainage (ARD) formed by oxidation of sulphides exposed to air underground. A waste pile from the underground development at Tom West was also covered with an impermeable barrier to reduce ARD from the site. The adit continues to make water as designed and metal contents and other parameters of the discharge water are monitored as per the requirements of the current Type B water use licence (see Permitting Considerations below).

Routine water quality monitoring has been conducted around the Tom deposit since 2001 by Ensero Solutions Canada Inc. (Ensero), (formerly Alexco Environmental Group (AEG)), and has occurred under Water Licences QZ99-046, QZ13-034, QZ15-060, and QZ19-058. The monitoring program has subsequently been expanded to include stations around the Jason and Boundary Zone deposits as well as connecting access roads. Numerous tributaries that drain into the South Macmillan River on the property are subject to naturally occurring ARD that results in naturally elevated metal concentrations and depressed (acidic) pH (Ensero 2023 2024; Kwong and Whitley 1992; Mackie et al. 2015). In 2022-2023, pH at stations around the Tom and Jason deposit areas ranged between 2.81 and 6.86; stations around Boundary Zone ranged 7.08-7.35. Stations on the South Macmillan River three kilometres and 23 km downstream also ranged pH 4.56 to 4.85. Overall, these pH values were within the historical range of pH values observed at these stations in the past (Ensero 2024).

The 2018 PEA on Tom and Jason (Makarenko et al. 2018) addressed the contribution from the Tom adit to acidity and metal loading at downstream locations. The 2018 PEA concluded that the ARD potential from any possible future mining operation is probably high (to be confirmed by detailed acid base counting (ABA) and other studies still to be completed) and despite discharge into streams with natural high acidity and elevated metal values, the Project will likely require appropriate ARD mitigation measures during and after potential future mining operations.

While no formal ARD studies have been completed, a geochemical characterization program has been initiated by Lorax Environmental Services consultants for Fireweed to provide information on the intrinsic metal leaching and acid rock drainage (ML/ARD) potential of the various lithologies which may be encountered during open pit and/or underground mining of the deposits. This static geochemical work will inform future kinetic geochemical studies and development of an ARD management plan.

A preliminary environmental investigation of the former Jason property in 2006 by Gartner Lee Ltd noted that several historical exploration boreholes below an elevation of 1,250 m were discharging water. Water samples from one of these boreholes and four samples of surface water exceeded the Canadian Council of Ministers of the Environment (CCME) Aquatic Life guidelines for several metals, including cadmium and zinc. As noted in annual water quality monitoring reports and regional studies, elevated metal concentrations and low pH levels reflect natural groundwater discharge from the site, as the Earn Group sediments that host the mineral deposits are regionally elevated with respect to several metals, including zinc, cadmium, lead, and silver (Ensero 2023, 2024; Mackie et al 2015).

In 2015, drill pads and collars at the former Jason property were rehabilitated and holes plugged with cement when ground conditions allowed. Remaining holes have been rehabilitated by Fireweed, along with several historical holes on the Tom leases that were also discharging

water. New drill holes are capped wherever possible, and in the case of holes making water, first plugged and grouted to prevent continued flow of water to surface. Holes that require plugging will be inspected periodically for signs of seepage. Ongoing remediation and reclamation efforts are documented in annual reporting submitted under the Tom-Jason Class 4 and Boundary Zone Class 3 permit requirements.

4.5 **Permitting Considerations**

For exploration programs (over specific activity thresholds) and mine development in the Yukon, a project proposal must be assessed in accordance with the *Yukon Environmental and Socioeconomic Assessment Act* (YESAA) by the Yukon Environmental and Socioeconomic Assessment Board (YESAB) prior to seeking project licences, authorizations, or permits. The assessment includes a public comment period and consultations with affected First Nations. A project proposal includes plans for development, operations, environmental monitoring and mitigations, and decommissioning.

Any future development of the Tom, Jason, End Zone, or Boundary Zone deposits will require an environmental assessment under YESAA and a Yukon Mining Licence and Lease issued by the Yukon Government. Additional permits will be required from the territorial and federal governments to further develop the deposits. For example, development of mining activities in the Yukon requires the issuance of a Type A water license by the Yukon Water Board.

4.5.1 Tom and Jason Deposits

Annual exploration program activities are permitted at the Tom and Jason deposits under a Yukon Class 4 Quartz Mining Land Use Approval (LQ00490b) in accordance with the *Quartz Mining Act* and Quartz Mining Land Use Regulation. This permit expires on October 15, 2028. Approved activities include diamond drilling, surveying, soil sampling, environmental studies, camp operation, use of heavy equipment, new road and trail construction, use of existing roads, water use, clearing, waste management, fuel storage, and reclamation. Reclamation and/or decommissioning of roads and trails is to be progressively completed when they are no longer needed to support activities.

Water use and discharge of water from the Tom adit are governed by a Type B Water Licence (QZ19-058) that is valid until December 31, 2030. The discharge from the lower Tom adit has naturally elevated metals levels and has been the subject of periodic water quality monitoring, water sampling, and reporting since 2001.

A second Type B Water Licence (MS20-074) is active over an area of the Jason Road, 400 m off the North Canol Road and governs recently completed bridge replacement work over the South Macmillan River. The licence is valid until November 30, 2028. Periodic field monitoring and submission of an annual report is required.

Several additional permits are in place related to operation of Fireweed's Tom and Sekie camps that accommodate field crews and are the operational hub of exploration activities at Macpass. These include a Commercial Dump Permit (#81-029) valid until December 31, 2026, a Storage Tank System Permit (2022-17) valid until July 11, 2027, a Storage Tank System Permit (2023-35) valid until September 20, 2028, a Sewage Disposal System Permit (#6040) currently under review. *Water Act* Schedule 3 Notifications governing water use related to drilling are also required to be submitted on an annual basis.

4.5.2 Boundary Zone Deposit

Annual exploration program activities are permitted on a portion of the Nidd claim group, where the Boundary Zone deposit is located, under a Yukon Class 3 Quartz Mining Land Use Approval (LQ00575). This permit expires on December 12, 2025. Approved activities include helicopter-supported diamond drilling, surveying and soil sampling, clearing, fuel storage, and reclamation.

As at Tom and Jason, *Water Act* Schedule 3 Notifications governing water use related to drilling are also required to be submitted on an annual basis ahead of the start of each field season.

4.5.3 Regional Exploration

Seasonal exploration programs across other parts of the Macpass property are permitted under Yukon Class 1 Quartz Mining Land Use Notifications. Typical approved activities include helicopter-supported drilling, geochemical sampling, geological mapping/prospecting, geophysical surveys (air/ground), fuel storage, and temporary camps.

A Water Act Schedule 3 Notification must be submitted in advance of each field season.

4.6 First Nations

The Macpass property lies within the within Traditional Territories of the Kaska Nation and First Nation of Na-Cho Nyäk Dun.

The Yukon has constitutionally protected modern treaties, known as Final Agreements, that describe how the federal, territorial, and First Nations governments interact with each other and define First Nations ownership of and decision making powers on Settlement Land. The Final Agreements address heritage, fish, wildlife, natural resources, water, forestry, taxation, financial compensation, economic development, and land management. The Umbrella Final Agreement is the framework for negotiating the individual Final Agreements.

The First Nation of Na-Cho Nyäk Dun is a self-governing First Nation with land-use rights within the Project area and land management rights on settlement lands as detailed in their Final Agreement and the Umbrella Final Agreement.

The Kaska Nation hold constitutionally protected rights throughout their Traditional Territory, which the Macpass Project lies within. The Ross River Dena Council and the Liard First Nation, the two Yukon Kaska First Nation communities, remain unsettled and have not signed a Final Agreement under the Umbrella Final Agreement.

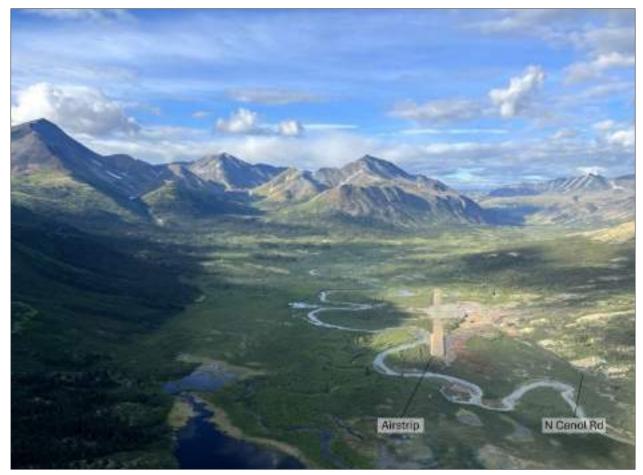
The property is within the Ross River Area of Kaska Traditional Territory that is subject to a mineral claim staking ban (Ross River Area (OIC) 2013/224) pending settlement of land claims. The moratorium has been in place since 2013 and has been extended several times to facilitate continuing Yukon government consultation with the Ross River Dena Council. The moratorium does not prevent exploration or development work on existing claims, and does not prevent engagement and consultation between operators, government, and First Nations in Yukon related to permit applications for mineral exploration and development work.

Fireweed is committed to working collaboratively with First Nations as exploration advances at the Macpass property to ensure that their rights, interests and concerns are meaningfully addressed, and their input informs Fireweed's current and future Project planning.

4.7 Significant Factors and Risks

The SLR QP is not aware of any other significant factors and risks that may affect access, title, or the right or ability to perform the proposed work program on the property.

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography


5.1 Topography, Elevation, and Vegetation

The Macpass Project is in the Hess Mountains region of the Selwyn Mountains, part of the North American Cordillera. Mountains and ridges separate broad valleys through which numerous creeks and rivers flow (Figure 5-1). Elevations in the Project area range from 1,100 MASL in valley bottoms to 2,100 MASL at mountain peaks around the Tom deposit. There is a gain in elevation of over 650 m along the North Canol Road between Ross River and the Project property (200 km distance).

Vegetation is dependent on elevation and host rock, with diversity of plant species varying throughout the region due to differences in microtopography, microclimate, and bedrock lithology (Smith et al. 2004). Typical species include various lichen, grass, and dwarf shrub communities, shrub birch-willow communities, and subalpine fir. The treeline is at approximately 1,350 MASL.

Vegetation is more developed in the valley bottoms, consisting primarily of grasses, small shrubs, moss and lichen. Black spruce and white spruce forests, sometimes mixed with subalpine fir, lodgepole pine, shrub birch and willow, are found on valley slopes and in river and creek valleys (Smith et al. 2004). A large area of scree, boulders, and hard rock characterizes the area around the Tom deposit, with little to no vegetation.

Figure 5-1: Macmillan Pass Aerodrome and North Canol Road in Typical Property Topography

Note: Looking northeast. Typical of the Macpass property and the broader Selwyn Mountains region, the landscape features broad valleys flanked by mountain peaks. Source: Fireweed 2024.

5.2 Accessibility

The property can be accessed by road from Whitehorse, which is the capital of Yukon and has an international airport. The first 400 km from Whitehorse are on the sealed Klondike Highway (Hwy 2) and Robert Campbell Highway (Hwy 4) to the town of Ross River, followed by approximately 200 km on the seasonal North Canol Road, a government maintained gravel road (Hwy 6). The North Canol Road is accessible only in the summer and fall while a barge at Ross River is in operation.

The Tom deposit is accessible directly from the North Canol Road. The Jason deposit is accessible from the North Canol Road by a newly replaced bridge across the South Macmillan River. Exploration roads and trails built by Fireweed and previous owners provide access to various parts of the Tom, Jason, and End Zone deposits and surrounding claims.

The Boundary Zone, on the Nidd claim group, also has a network of historical trails and roads, and is connected to the Jason claim group by the Nidd Road, which in its current condition is only passable by ATV. Exploration at Boundary Zone and across the broader Macpass property has been helicopter-supported based out of Fireweed's main camp, Tom Camp, located on the

Tom leases, which is the logistical hub of the property. Fireweed is assessing potential for future use of the road.

A Yukon Government-maintained 780 m long gravel airstrip, the Macmillan Pass aerodrome, is located on the property 2.5 km north-northwest of the Tom deposit and supports exploration activities in the region (Figure 4-2 and Figure 5-1).

5.3 Climate

The climate of the region is sub-arctic. Weather data collected by a government weather station at the Macmillan Pass aerodrome averages approximately -20°C in the winter to +18°C in the summer. The mean summer air temperature is typically between 5°C and 10°C, with daily maximums at approximately 15°C and minimums at approximately 5°C. Mean winter temperatures have more day-to-day variation, but are typically between -10°C and -20°C. During the winter season, air temperatures rarely rise above freezing.

Precipitation data are not available for Macmillan Pass aerodrome, however, at Fireweed's adjacent Mactung project to the north, average annual precipitation is 672 mm, with approximately half falling as snow. Midwinter snowpack varies from thin discontinuous on windswept sites to greater than two metres in drifted areas.

The effective exploration field season runs from late May to late October. This shortened field season is primarily due to avalanche dangers in the Tom deposit area, water supply issues, and road access that is dependent on the operating season of the barge crossing at Ross River.

5.4 Local Resources

Labour and business suppliers and services are available from the local Yukon communities of Ross River, Faro, Mayo, and Watson Lake, as well as Whitehorse (Figure 4-1). Fireweed continues to hire and train local employees and retain qualified local businesses whenever possible to support site activities.

The city of Whitehorse, 600 km via road from the Project, is the major center of supplies and communications in the Yukon and is a source of skilled labor for exploration diamond drilling, construction, and mining operations. There is daily commercial airplane service from Whitehorse to Vancouver, British Columbia and other points south.

Ross River (population 400 (Yukon Bureau of Statistics 2024)) is 200 km by road from the Macpass Project. It is located at the start of the North Canol Road and has a general store, Yukon Government Health Centre, and fuel services available.

Bureau Veritas Laboratories Ltd. (Bureau Veritas) and ALS Minerals Laboratory have sample preparation facilities in Whitehorse.

5.5 Infrastructure

5.5.1 Exploration Support

There are no services available at the Project site. Electricity is generated locally by diesel generators and supported by a solar array.

Tom Camp is a 49 person trailer camp, first installed as a 20 person camp in 2011 and expanded in 2018-2020, and has served as the operational hub for exploration work on the property. Due to its location in an avalanche prone area, the camp's operational window is limited to summer and fall months when snowpack is low and the avalanche risk has subsided.

In 2023, a 49 person Weatherhaven camp, Sekie Camp, was installed halfway between Tom Camp and the Macmillan Pass aerodrome, away from the avalanche hazard zone. The location of Sekie Camp will protect camp infrastructure and extend the potential operational season to accommodate staff for environmental monitoring, drilling, and related activities year-round should the need arise.

The new camp includes accommodation, offices, core logging facilities, helipad, and various pieces of heavy equipment and ATVs. The camp is permitted for gradual expansion to accommodate up to 150 people as Tom Camp is decommissioned.

5.5.2 Mine Development

Hudbay, now named Hudbay Minerals Inc. (Hudbay Minerals), excavated an adit and underground workings in stages between 1969 and 1982 to access the Tom West zone for bulk sampling and underground drilling, for a total of 3,423 m of underground workings. The adit was partially plugged in 2010 to flood existing workings and reduce the flow of AMD from the opening. An upper level decline into the deposit was developed in 1982, also for exploration purposes, however, was subsequently backfilled.

Preliminary infrastructure studies related to the Tom and Jason deposits have identified areas suitable for mine processing, operations, and waste and tailings storage (Makarenko et al. 2018). These will be reviewed further in future economic and feasibility studies prior to any development applications. No such studies have been carried out relating to Boundary Zone or in the Boundary Zone area.

Potential power sources include diesel or liquid natural gas (LNG) generators at site, with studies underway (including a current solar trial) to assess the extent to which renewable energy sources can provide power at Sekie Camp. Water is readily available, subject to permitting by the Yukon Water Board.

For road transport, the North Canol Road requires upgrades and has been marked for improvement under the Federal and Yukon Government Yukon Resource Gateway Project. Proposed upgrades include bridge replacement and safety improvements and resurfacing 60 km of the Robert Campbell Highway. On the property, Fireweed has recently replaced a derelict bridge across the South Macmillan River to restore access to the Jason area. The existing road beyond Jason to Boundary Zone would require repair and upgrading to establish road access to that part of the property.

The nearest year-round ice-free port facilities are in Skagway, Alaska (Figure 4-1). Rail connections are from Whitehorse, Yukon and Fort Nelson, British Columbia.

5.6 Indigenous Group Engagement

The Macpass Project is located within the Traditional Territories of the Kaska Nation and First Nation of Na-Cho Nyäk Dun. Fireweed is committed to conducting exploration and mine development activities that are informed by the aspirations and interests of Indigenous peoples and local communities. Fireweed meaningfully engages on project-related activities and provisions to meet current and future regulatory requirements and local agreements. Fireweed maintains regular communication with First Nations potentially affected by the Macpass Project.

During any future project and potential mine development planning processes, Fireweed is committed to collaboratively working with Indigenous groups and local communities to achieve a high standard of environmental stewardship, and to undertake studies and implement measures to address local concerns and interests.

6.0 History

6.1 **Prior Ownership**

The present day Macpass Project property was acquired by Fireweed through option and purchase agreements from multiple owners and operators, beginning with the Tom and Jason claim groups optioned in 2016, and adding the surrounding claim groups between 2017 and 2022. Previous claim group outlines are shown in Figure 4-2. In 2022, Fireweed changed its name from Fireweed Zinc Ltd. to Fireweed Metals Corp. to reflect its transition from a zinc exploration company to a critical minerals company after acquiring additional projects (Fireweed 2018).

6.1.1 Tom and Jason Claim Groups

The former Tom property, which included the Tom deposit (the original sedimentary exhalative deposit (SEDEX) discovery in the district), was held by Hudbay since its discovery and staking in 1951, although it was temporarily optioned to Cominco Ltd (Cominco) between 1988 and 1992.

The Jason claims were originally staked by the Ogilvie Joint Venture (Ogilvie JV) in 1974 prior to the first drilling at the Jason deposit a year later. An interest in the property was obtained by Pan Ocean Oil Ltd (Pan Ocean) in 1979 before being acquired by Aberford Resources Ltd. (Aberford) in 1981. Aberford's interest in the property was transferred to Abermin Corporation in 1985 and subsequently to CSA Gold Corporation. All parties transferred their interests to MacPass Resources Ltd before Hudbay, now named Hudbay Minerals Inc. (Hudbay Minerals), purchased the Jason property in 2007 to consolidate the Tom and Jason claims.

In December 2016, Hudbay Minerals signed an option agreement with Fireweed for the Tom and Jason properties that was fully exercised in February 2018, giving Fireweed 100% ownership of the Tom and Jason claims.

6.1.2 MAC Claim Group

The MAC claims were staked in 2011 by Newmont Mining Corp (Newmont), which explored for gold in 2011, 2012, and 2013. Newmont optioned the MAC claims to Fireweed in 2017 and subsequently sold the option agreement to Maverix Metals (Maverix) in 2018. Fireweed exercised its option with Maverix in October 2020 to acquire 100% ownership of the MAC claims.

6.1.3 MC, MP, and Jerry Claim Groups

The MC, MP, and Jerry claims were staked in 2010 by the Carlin Gold Corp (Carlin)-Constantine Metal Resources Ltd (Constantine) Joint Venture (CCJV), which explored the district for Carlin-style gold mineralization until the property was optioned to Fireweed in 2018. Constantine transferred their interest to Epica Gold Inc. (Epica) (a wholly owned subsidiary, later spun off to HighGold Mining, that subsequently became a subsidiary of Onyx Gold Corp.) in July 2019. Fireweed exercised the option with Carlin and Epica to become 100% owners in September 2020.

6.1.4 NS and BR Claim Groups

The NS and BR claims were staked in 2011 by Golden Ridge Resources Ltd (Golden Ridge), which explored for cobalt and zinc before optioning the ground, known as their North Canol Property, to Fireweed in 2018. Fireweed exercised the option with Golden Ridge to become 100% owners in September 2020.

6.1.5 Nidd Claim Group

The Nidd claims, where the Boundary Zone deposit is located, were staked in 1976 by Cominco (later Teck Cominco Ltd. in 2001, then Teck Resources Ltd in 2008). Fireweed acquired the claim group in 2018 in a purchase agreement with Teck Metals Ltd., a subsidiary of Teck Resources Ltd., to acquire the Nidd claim group and extend the Macpass Project to the west.

6.1.6 Oro, Sol, Stump, NC, and Ben Claim Groups

The latest additions to Fireweed's Macpass Project property were the Oro, Sol, and Stump claims to the west, the NC claims on the south of the property, and Ben claims to the southeast. The Oro claims were staked as the Brick-Neve claims in 1979 by AGIP Canada Ltd (AGIP), which worked the property until 1989. The claims were transferred to Cameco Resources Ltd (later Cameco Corporation), in 1994 and were allowed to lapse in 2000. The claims were restaked as the Oro claims in 2010 by Cathro Resources. Colorado Resources Ltd (Colorado Resources) optioned the property later that year and staked additional claims in early 2011, exploring for gold in 2011 and 2012. In 2013, Colorado Resources optioned the Oro property to Gold Fields Selwyn Exploration Corporation, a wholly owned subsidiary of Gold Fields Ltd, that explored for gold and terminated its option that year. In 2020, Fireweed entered an agreement with Cathro Resources and Cazador Resources Ltd., joint owners of the claim group, to purchase the Oro claims. The transaction was completed in January 2022.

The area now covered by the Sol claims to the west of Nidd were originally staked in smaller blocks and explored between 1977 and 1984 by Hudbay and Cominco. Colorado Resources restaked the area as the Sol claims in 2010 along with the adjacent Oro claims, exploring for gold in 2011 and 2012 before optioning both the Sol and Oro claims to Gold Fields in 2013. The option was terminated and Colorado Resources remained the owner until becoming QuestEx Gold & Copper Ltd. (QuestEx) in 2020. Fireweed purchased the Sol claims along with the Stump, NC, and Ben claims from QuestEx in November 2020.

6.2 Exploration and Development History

The area became more accessible for mineral exploration in the early 1940s when the Canol ("Canadian Oil") road and pipeline were built in 1942-1944 under the direction of the US Army Corps of Engineers. The pipeline was constructed to deliver oil from fields at Norman Wells, Northwest Territories, to Fairbanks, Alaska in support of the war effort against Japan. The Tom zinc-lead-silver (Zn-Pb-Ag) deposit is located two kilometres from the Canol Road and was discovered in 1951 by prospectors working for Hudbay Exploration and Development, a subsidiary of Hudson Bay Mining and Smelting Co., Limited.

Since the discovery of Zn-Pb-Ag mineralization at Tom in 1951, multiple owners and operators have explored different parts of the Macpass property. The section below focuses on Zn-Pb-Ag exploration on the property. Most of the base metal exploration on the Macpass property has occurred on the Tom, Jason, and Nidd claims where the Tom, Jason, and Boundary Zone deposits are located. Between 1952 and 2023, a total of 277 holes were drilled in proximity to the Tom deposit totalling 45,909 m; 136 holes were drilled in proximity to the Jason deposit

totalling 38,950 m; 19 were drilling at End Zone totalling 4,158 m. On the Nidd claims at and around Boundary Zone, 112 holes totalling 35,615 m were drilled. Drilling is described in detail in Section 10.

Gold exploration has also taken place across the property, mainly on the MAC, MC, MP, Jerry, BR, NC, Oro, and Sol claim groups in the 1980s and 1990s and again between 2009 and 2013, leading to the discovery of several sediment-hosted prospects, as well as intrusion-related vein and stockwork prospects.

6.2.1 1950s-1960s (Hudbay)

The Tom deposit was discovered in 1951 by prospectors working for Hudbay who identified Zn-Pb-Ag mineralization at surface where the Tom West deposit crops out. Sixty-five holes were drilled from surface between 1952 and 1968 totalling 10,291 m.

Hudbay excavated an adit and underground workings in stages between 1969 and 1982 to access the Tom West and later Tom East zones of the Tom deposit for bulk sampling and underground drilling, for a total of 3,423 m of underground workings. The workings were eventually decommissioned, and ultimately plugged in 2010.

Hudbay also carried out extensive soil sampling over the Tom claims in 1969. Lead-in-soil anomalies have been useful in identifying potential Zn-Pb-Ag targets across the Macpass property, in addition to zinc-, silver-, and barium in soil.

6.2.2 1970s (Hudbay, Ogilvie JV, Cominco)

At Tom West and Tom East, Hudbay drilled 65 underground holes totalling 3,868 m and 20 surface holes totalling 2,882 m.

The Jason claims were staked in 1974 by the Ogilvie JV after identifying similar geology to that of the Tom deposit. Exploration consisted primarily of mapping, prospecting, and soil sampling before the first holes were drilled in 1975. Between 1975 and 1979, Ogilvie JV drilled 55 holes totalling 9,279 m into what are now Jason Main and Jason South zones.

The Nidd claims were staked by Cominco between 1976 and 1981 to cover the western extension of the stratigraphy that hosts the Tom and Jason deposits. Exploration primarily involved geological mapping, soil and rock geochemistry, geophysics, diamond drilling, road building, and trenching, and lead to the drilling of several holes at Boundary Zone in the 1980s.

Cominco and Hudbay also staked and completed small soil grids on what are now the Sol claims further to the west between 1977 and 1984. AGIP staked the Brick-Neve claims (now Oro claims) in 1979, also focused initially on Zn-Pb-Ag exploration, however, shifted to gold exploration after identifying realgar-orpiment +/- stibnite veining during preliminary geological mapping.

6.2.3 1980s (Cominco, Pan Ocean, Aberford)

Hudbay continued drilling at Tom from 1980-1982, completing 15 underground holes totalling 1,366 m and 12 surface holes totalling 1,408 m. From 1988-1991, Cominco optioned the property and drilled 23 holes totalling 11,684 m.

Ogilvie JV completed 20 drill holes totalling 5,858 m at Jason before optioning the property to Pan Ocean and subsequently Aberford. Pan Ocean completed a large drill program in 1981, drilling 28 holes, including two at End Zone, totalling 14,368 m.

At Nidd, Cominco completed 26 drill holes totalling 7,786 m, of which six holes were drilled in what is now called the Boundary Zone. Fourteen of the 26 holes intersected zinc mineralization.

Over the northern part of the property, Amax Exploration Ltd carried out a large soil sampling program in 1981-1982 on what became the MC and MAC claims.

Further west, AGIP shifted focus from Zn-Pb-Ag exploration to gold exploration on the Brick-Neve claims and carried out mapping, soil and stream sediment sampling, and trenching programs. At prospective gold target locations, 18 holes were drilled totalling 2,365 m in 1985 and 1988.

6.2.4 1990s-2000s (Cominco, Phelps Dodge Corporation)

In 1990 to 1992, Cominco continued drilling at Tom and Nidd, including holes into what is now Boundary Zone, and Phelps drilled 20 holes totalling 5,221 m at Jason.

Very little work was done at what is now the Macpass Project site between 1992 and 2010, with the exception of a soil sampling and hand trenching program by Expatriate Resources in 1998 on what later became the MC claims on the north of the property.

6.2.5 2010-2017 (Hudbay, Teck Resources Limited, Newmont, CCJV, Colorado Resources, Golden Ridge)

In 2011, Hudbay carried out a 1,831 m, 11 hole diamond drill program at Tom to obtain sample material for metallurgical testing and complete infill drilling on the Tom West zone. Approximately 1,133 kg of mineralized sample material was collected for metallurgical testing using half core samples. A 20 person camp at the current Tom Camp location was also established at this time.

Prompted by the discovery of sediment-hosted (Carlin style) gold northwest of the Macpass Project site at ATAC Resources' Rackla project (now owned by Hecla Mining), efforts in the area shifted from Zn-Pb-Ag to gold exploration.

Between 2011 and 2013, various operators, including Newmont, CCJV, Colorado Resources, and Golden Ridge carried out extensive soil sampling, mapping, and stream sediment sampling across the northern and western parts of the property on the MC, MAC, MP, NS, BR, Oro and Sol claims, as well as the Jerry claims east of Tom. Although not focused on base metals, these programs generated large geochemical datasets that have provided useful information for more recent Zn-Pb-Ag exploration.

Some Zn-Pb-Ag exploration was completed in the Boundary Zone area, when Teck carried out a small soil sampling and mapping program in 2012.

Airborne geophysical surveys were flown across parts of the property. In 2011, Golden Ridge completed an 84.6 line kilometre DIGHEM airborne electromagnetic/magnetic survey flown by Fugro Airborne Surveys (Fugro) on the southern part of the Macpass property. In 2013, the Yukon Geological Survey (YGS) published a regional Z-axis tripper electromagnetic (ZTEM) survey flown in 2008 that included the Macpass Project area.

6.2.6 2017-Present (Fireweed)

Fireweed has continued to explore the property and expand deposits using a combination of geological mapping, prospecting, soil sampling, and geophysical surveying methods. Ground gravity in particular has informed target development and led to the discovery of Boundary West in 2020. Details of Fireweed's exploration and drilling efforts are provided in Section 9 and Section 10.

The Tom Camp facilities have been expanded to accommodate 49 people, and a second 49 person camp, Sekie Camp, has been established with capacity to expand to up to 150 people.

6.3 Historical Resource Estimates

In 2018, Fireweed engaged CSA Global Consultants (CSA Global) to prepare an independent Mineral Resource Estimate (MRE) and accompanying report *NI43-101 Technical Report on the Macmillan Pass Zinc-Lead-Silver Project, Watson Lake and Mayo Mining Districts, Yukon Territory, Canada* with an effective date of January 10, 2018 (Arne and McGarry 2018). The 2018 MRE included estimates for the Tom and Jason deposits only and the 2018 MRE was not constrained by mining volumes. Base Case estimates are summarized in Table 6-1. This estimate superseded a 2007 MRE for the Tom and Jason deposits completed by Scott Wilson Roscoe Postle Associates (RPA) that is summarized in Table 6-2. Twenty-five holes totalling 4,033 m were drilled into the Tom and Jason deposits between the preparation of the 2007 and 2018 MREs.

The current Mineral Resource described in this Technical Report supersedes any historical resources. The 2007 and 2018 estimates are considered to be historical in nature and should not be relied upon, however, are included to give an indication of mineralization and of resource growth on the property. The SLR QP notes that the 2007 and 2018 historical resource estimates were not constrained by mining shape volumes such as open pit shells or underground stope shapes and were reported as unconstrained estimates.

Category	Tonnes (Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (B lbs)	Zn (B lbs)	Ag (Moz)
Indicated	11.21	9.61	6.59	2.48	21.33	1.63	0.61	7.69
Inferred	39.47	10.00	5.84	3.14	38.15	5.08	2.73	48.41

Table 6-1:	2018 MRE at NSR cut-off	arade of C\$65/t for the	Tom and Jason Deposits
	ZUTO WILL AL MOL CULOT	Jiaue of Googlitor the	TOTT and Jason Deposits

*Estimates by Leon McGarry, P.Geo of CSA Global (Arne and McGarry 2018). The in-ground NSR values were calculated using estimated metallurgical recoveries, assumed metal prices and smelter terms including payable factors, treatment charges, and refining charges. No penalties were included. Metal price assumptions were US\$1.17lb/Zn, US\$0.99/lb Pb, and \$US16.95/oz Ag and an exchange rate of US\$1 = C\$1.24. Metal recovery assumptions were: 79% Zn, 82% Pb, and 85% Ag (12% to Zn concentrate and 73% to Pb concentrate). Based on these assumptions the NSR on each block was calculated as: NSR \$C/t = \$16.16 * Zn(%) + \$16.08 * Pb(%) + \$0.05853 * Ag(g/t) - \$61.46 * Zn(%) + \$0.4470 * Ag(g/t) - \$36.07 * Pb(%). The ZnEq calculation was performed as ZnEq = NSR/C\$16.16. Resources were estimated by ordinary kriging (OK).

Category	Tonnes (Mt)	Zn (%)	Pb (%)	Ag (g/t)
Indicated	6.43	6.33	5.05	56.55
Inferred	24.55	6.71	3.48	33.85
*Estimates by David Rennie, P.Eng. of Scott Wilson RPA (Rennie et al. 2007)				

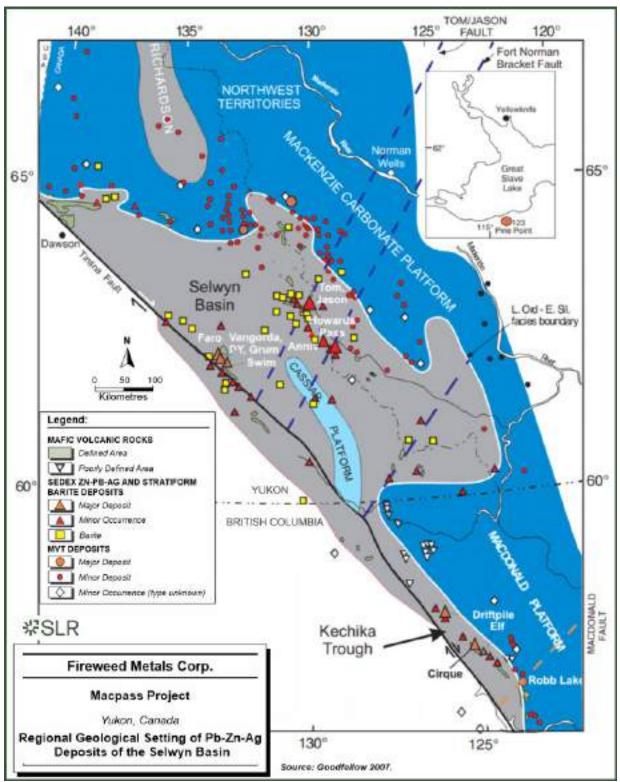
	Table 6-2:	2007 MRE for Tom and Jason Deposits
--	------------	-------------------------------------

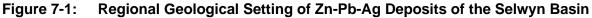
Since the 2018 MRE, Fireweed has drilled 2,097 m in 10 holes at Jason and 11,642 m in 59 holes at Tom, including several step-out holes and new zone discovery holes. The results from these holes are incorporated with 2017 and older data to inform the 2024 MRE.

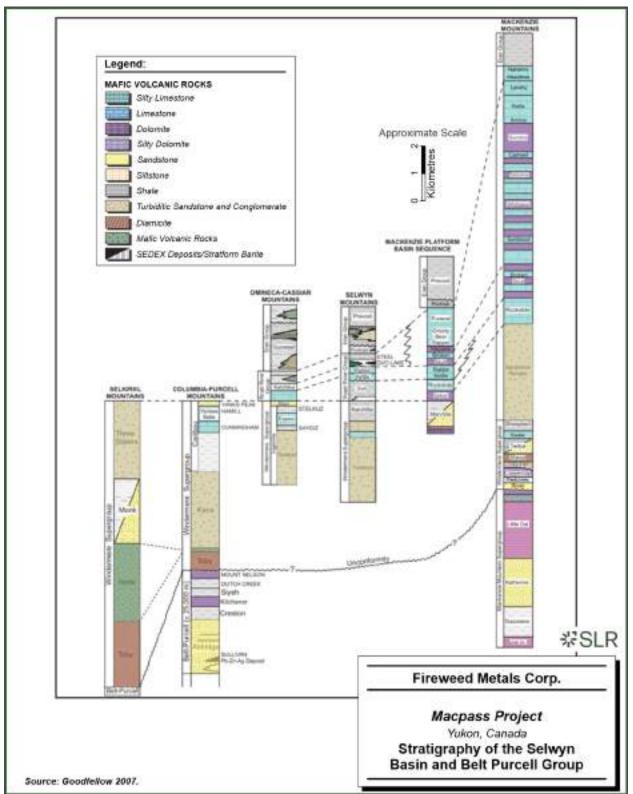
There is no historical resource for End Zone or Boundary Zone. Since 2018, Fireweed has drilled 743 m in five holes at End Zone and 27,830 m in 86 holes at Boundary Zone.

6.4 Past Production

There is no known production from the Macpass property. An exploration adit and decline were excavated for underground bulk sampling and exploration purposes at the Tom West zone in stages between 1969 and 1982.


7.0 Geological Setting and Mineralization

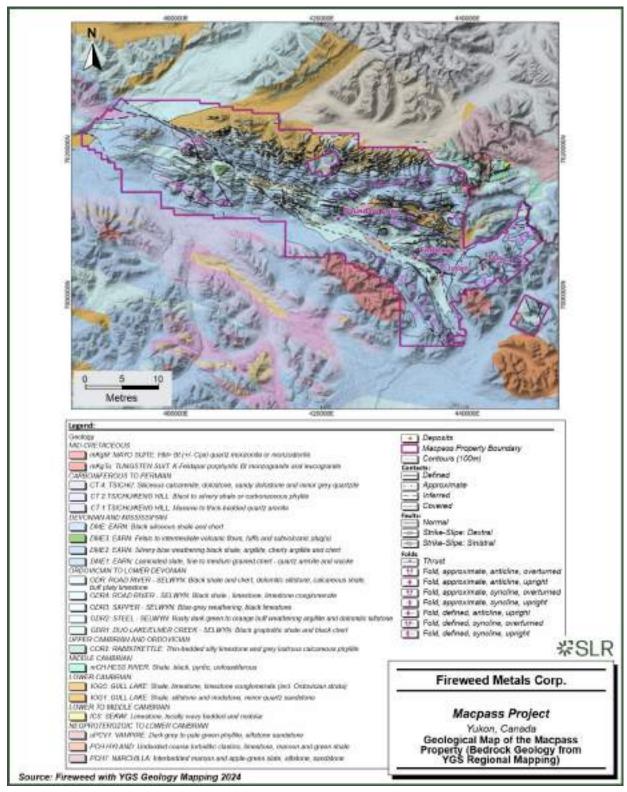

7.1 Regional Geology


The Macpass property lies within the late Neoproterozoic to Palaeozoic Selwyn Basin, a deep-water marine basin off the passive margin of ancestral North America (Rennie, 2007; Goodfellow, 2007) (Figure 7-1). This basin consists of a thick package of sedimentary rocks beginning with the late Proterozoic to Cambrian Windermere Supergroup, a thick sequence of continentally derived sediments. These are in turn overlain by the late Cambrian to Ordovician carbonate rocks of the Rabbit Kettle Formation and then by the deep-water cherts and shales of the Ordovician to early Devonian Road River Group. The Road River Group is overlain by chert, black shales, and turbidite sediments of the Devonian to Mississippian Earn Group that hosts the Tom and Jason deposits, as well as other lead-zinc and barite mineralization in the Macpass property and surrounding area.

The stratigraphy of the Selwyn Basin and the adjacent Mackenzie carbonate platform that existed to the north and east of the basin (Figure 7-1) is shown in Figure 7-2. A detailed stratigraphic description of the Macpass area is available in Abbott and Turner (1991).

The Selwyn Basin underwent regional magmatism in the mid to late Cretaceous, culminating in the emplacement of numerous stocks, plugs, and associated dike/sill swarms throughout the basin intruding the ancient North American continental margin of the northern Canadian Cordillera (Hart, 2004). Many of these Cretaceous intrusions crop out on the Macpass property, and these intrusions form a belt of intrusion-related gold and tungsten deposits known as the Tombstone-Tungsten Belt (TTB). These TTB deposits and occurrences are preferentially associated with the plutonic suites that form an 800 km long belt of several hundred stocks, dykes, and sills.

7.2 Property Geology


The following is a brief description of the geology of the Macpass Project deposits. For a detailed description of the deposit geology the reader is referred to Abbott and Turner (1991), Goodfellow (1991), and Rennie (2007). The Macpass Project covers three distinct deposits of sedimentary rock-hosted, stratiform zinc-lead-silver (Zn-Pb-Ag) mineralization including Tom, Jason, and End Zone, and one deposit containing brecciated, stratiform, and vein-hosted lead-zinc-silver mineralization at Boundary Zone. These deposits represent structurally and stratigraphically controlled feeder-fault systems that occur on splays of the Macmillan-Hess fault system.

The sediment-hosted Zn-Pb-Ag (+/- Ga-Ge) deposits occur predominantly within the Portrait Lake Formation at or near the contact between the Fuller Lake Member and the Macmillan Pass Member, while mineralization at Boundary occurs throughout a wide stratigraphic interval spanning sections of the Road River Group, the Portrait Lake Formation of the Earn Group and intercalated Macmillan Pass Volcanics (Figure 7-3 and Figure 7-4). The Fuller Lake Member consists of massive to thinly laminated, carbonaceous to siliceous, pyrite-rich mudstone, while the Macmillan Pass Member generally consists of interbedded black mudstone with grey siltstone and sandstone ("pinstripe mudstone") with coarse sandstone and conglomerate intervals. Carbonate-altered mafic volcanic and volcaniclastic rocks occur at several stratigraphic intervals, including within the Macmillan Pass Member, below the Niddery Lake member, and deeper, within the Road River Group.

Other critical elements of potential economic interest are often associated with these deposits. Germanium is often found associated with zinc deposits, particularly in sphalerite (ZnS), the primary zinc bearing mineral. Germanium substitutes for zinc within the sphalerite crystal lattice due to its similar ionic radius. Gallium can also substitute for zinc in sphalerite, as well as occurring in association with aluminosilicate minerals, where it substitutes for aluminum. Gallium (Ga) and germanium (Ge) are both present within mineralized zones at the Tom, Jason, End Zone, and Boundary Zone deposits.

Deposit geology is described in the following sections, and includes an overview of bedrock geology as well as geological and mineralization domains, which were determined using a combination of mapping and logging observations, assay data, supervised machine learning, and detailed reviews of these products alongside core photos. Initial geological and mineralization domains were provided by Fireweed and refined by SLR. These are described in further detail in Section 14.

Figure 7-3: Geological Map of the Macpass Property (Bedrock Geology from YGS Regional Mapping)

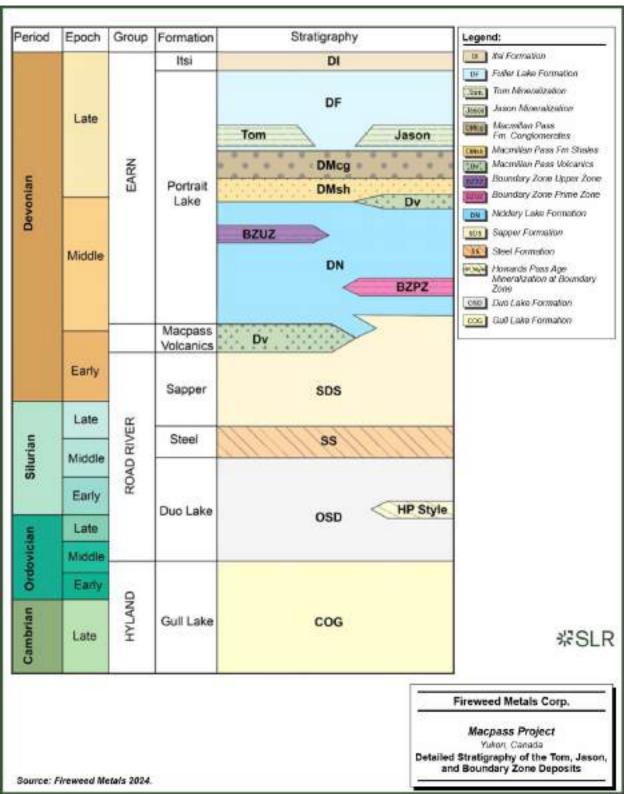


Figure 7-4: Detailed Stratigraphy of the Tom, Jason, and Boundary Zone Deposits

7.2.1 Tom Deposit

The Tom deposit consists of several stratiform Zn-Pb-Ag-Ba bodies of mineralization which crop out at surface and are located around an open, north-south trending, doubly-plunging anticline (Figure 7-5). Tom West sits on the western limb of the fold, and Tom East sits on the eastern limb. Tom South and Tom Southeast are located around the southern nose of the fold. Mineralization transitions from well-laminated and thinly bedded to zones of massive sulphide and semi-massive sulphide brecciation proximal to the feeder fault. The following section focuses on descriptions of mineralization styles, extent, and geology. For cross-sections of mineralized zones of the Tom deposit, see Section 14.

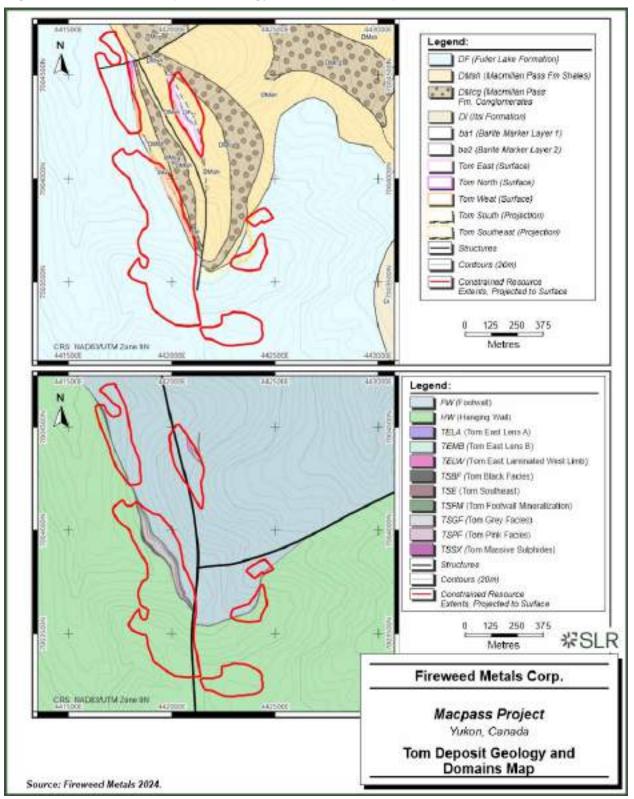


Figure 7-5: Tom Deposit Geology and Domains Map

7.2.1.1 Tom East

Tom East occurs near the hinge of an intensely deformed northward-plunging syncline. Mineralization is often remobilized and coarser grained, consisting of interbedded semi-massive sulphide sphalerite, galena, barite, and chert. This zone is thought either to have formed within the same stratigraphic level as Tom West (McClay and Bidwell 1986), or at a slightly lower stratigraphic interval, within the Macmillan Pass member (Large 1981). Mineralization is typically very high grade in this area.

7.2.1.2 Tom South and Tom Southeast

Tom South and Tom Southeast are contiguous and are both included within Tom South for resource reporting purposes. Mineralization at Tom South includes four facies: an upper section of Grey Facies (delicately striped barite, sphalerite black carbonaceous mudstones), followed by Black Facies (very strongly sphalerite laminated black carbonaceous mudstones), Pink Facies (barite rock with sphalerite and galena disseminated preferentially in laminae and bands), and Massive Sulphide Facies (massive sphalerite, galena and disseminated pyrite).

Tom Southeast is not exposed at surface and consists of a tabular stratiform body 0.5 m to 6.0 m in thickness with a strike length of approximately 400 m, and a down-dip extension of at least 350 m dipping steeply to the east. It is located near the nose of the southeast plunging Tom anticline on its eastern limb. Mineralization consists of finely laminated sphalerite, galena, pyrite, and black cherty mudstone (Goodfellow 1991).

7.2.1.3 Tom West

Tom West consists of similar geology as Tom South, from which it is offset by the Tom Fault. The Tom West surface exposure measures at least 10 m thick and can be traced over one kilometre on surface, with mineralization extending at least 800 m from surface down the plunge of the Tom antiform. The true thickness of the mineralized zone varies from less than 10 m on the margins to up to 60 m in the thickest sections.

7.2.1.4 Tom Deposit Mineralized Facies

Mineralization at Tom has been segregated into distinct facies along vertical and lateral transitions from darker to lighter sphalerite colours and progressively lower lead to zinc ratios, interpreted as increasing distance to the feeder zone (Goodfellow 1991; 2007). These facies consist of:

- Massive Sulphide Feeder Facies: Massive pyrite, pyrrhotite, galena, sphalerite, with minor chalcopyrite, arsenopyrite and tetrahedrite with ferroan carbonates, quartz and barite, typically grading 15% to 30% Pb+Zn and a high Pb:Zn Ratio (Figure 7-6).
- Pink Facies: Interlaminated cream-coloured to pink sphalerite, galena, barite, chert, pyrite, and barium carbonates (witherite). Locally high grades range from 10% to 30% combined Pb and Zn, including greater than 1% Pb (Figure 7-7).
- Grey Facies: Interlaminated cream to white coloured sphalerite, pyrite, minor galena, white to pale grey barite, pale grey chert and grey to white barium carbonate (witherite) and dark grey barium feldspar (hyalophane and celsian). Typically, with grades in the range of 4% to 5% Pb+Zn and Pb less than 1% (Figure 7-8).
- Black Facies: Black mudstone and chert interbedded with sections of interlaminated barite, witherite, and fine-grained white sphalerite, galena and pyrite. Typically, with grades in the 4% to 10% Pb+Zn range and a low Pb:Zn ratio (Figure 7-9).

Figure 7-6: Massive Sulphide Feeder Facies from TS23-009

Source: Fireweed Metals 2024.

Figure 7-7: Pink Facies from TS23-006

Source: Fireweed Metals 2024.

Figure 7-8: Grey Facies from TS23-007

Source: Fireweed Metals 2024.

Figure 7-9: Black Facies from TS23-003

Source: Fireweed Metals 2024.

7.2.2 Jason Deposit

The Jason deposit is hosted by a Devonian sequence of sediments disrupted by synsedimentary faulting and fault scarp material (Figure 7-10). Bounded to the south by the regional Hess fault, mineralization consists of two stratiform Ba-Zn-Pb-Ag bodies on opposite limbs of the Jason syncline. The Jason syncline is a steeply dipping, upright, west-trending syncline that plunges east, with the Jason Main zone located on the northern limb and Jason South zone occurring on the southern limb. Hosted within the lower Portrait Lake Formation of the Earn Group at the contact with the Macmillan Pass member, the carbonaceous sediments commonly contain mud-hosted diamictite breccias related to fault scarps that thicken towards the Hess Fault. For detailed cross sections of mineralized zones of the Jason deposit, see Section 14.

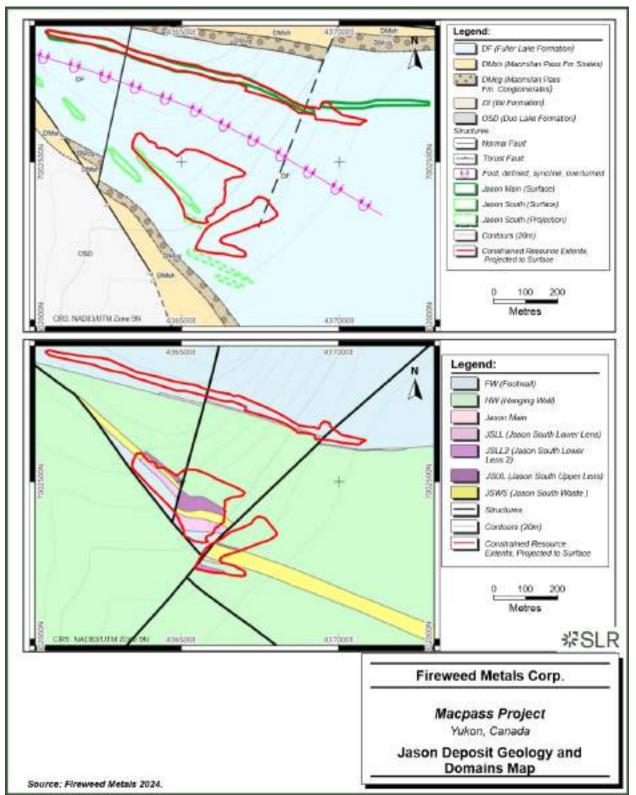


Figure 7-10: Jason Deposit Geology and Domains Map

7.2.2.1 Jason Main

Jason Main is located on the steeply dipping northern limb of the Jason syncline in a singular tabular body. Within the syncline, a laterally discontinuous lens of turbiditic diamictites, conglomerates and interbedded sandstones, and siltstones overlay the carbonaceous mudstone and barite-hosted mineralization.

7.2.2.2 Jason South

Jason South sits on the southern limb of the Jason syncline with multiple stacked tabular bodies of mineralization. The southern limb is more geologically complex than the northern limb due to: a relative abundance of diamictites; interfingering, laterally discontinuous units; and the presence of syn-sedimentary and cross-cutting faults.

7.2.2.3 Jason Deposit Mineralized Facies

Mineralization is spatially related with proximity to the feeder fault where diamictite facies, barite lenses, and metal content increase; These horizons can be divided into several distinct mineralization zones or facies, including (after Turner 1991):

- Pb-Zn-Fe Sulphide Facies: Massive, banded sphalerite-galena and galena-pyrite overlain by debris flow deposits (Figure 7-11).
- Barite-sulphide Facies: Interbedded fine-grained sphalerite, galena, barite, chert and ferroan carbonate forming the bulk of the mineralization at Jason (Figure 7-12).
- Quartz-sulphide Facies: Interbedded sphalerite, pyrite, quartz and carbonaceous chert with quartz-celsian (barium feldspar) bands in the lower lens (Figure 7-13).
- Massive Pyrite Facies: Massive pyrite beds interbedded with sphalerite, galena, chalcopyrite, pyrrhotite, and quartz located near the Jason Fault (Figure 7-14).
- Ferroan Carbonate Facies: Massive beds of siderite and ankerite up to several metres across with irregularly distributed galena, sphalerite, pyrrhotite, pyrite, quartz, muscovite, and pyrobitumen; spatially associated with a breccia pipe (Figure 7-15).

Figure 7-11: Pb-Zn-Fe Sulphide Facies from JS80-059

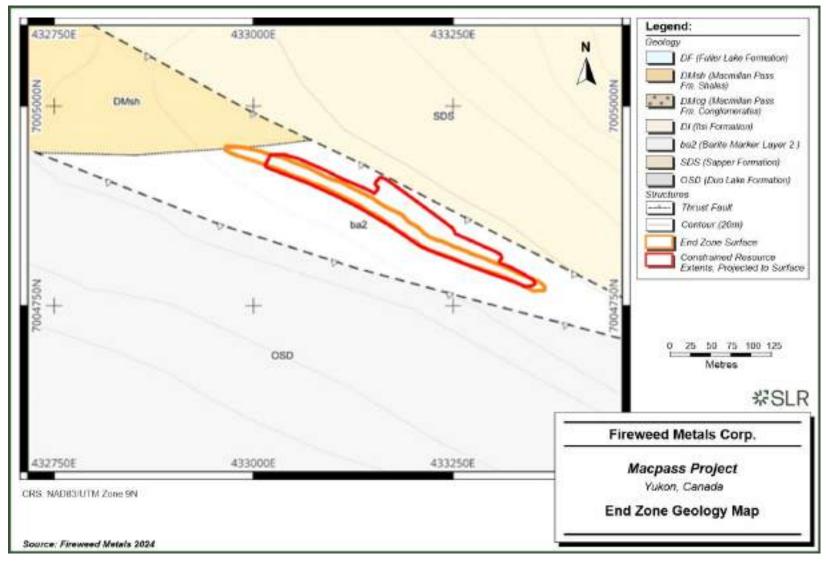
Source: Fireweed Metals 2024.

Figure 7-12: Barite-Sulphide Facies from JS23-001D1

Source: Fireweed Metals 2024.

Source: Fireweed Metals 2024.

Source: Fireweed Metals 2024.



Source: Fireweed Metals 2024.

7.2.3 End Zone Deposit

End Zone is a small, fault bound block of MacMillan Pass Member (and Fuller Lake Member) in fault contact with older Road River Group mudstones and carbonates (Figure 7-16). This fault block contains high-grade, massive sulphide mineralization (dominantly galena, pyrite, pyrrhotite, and sphalerite), interpreted to be feeder-proximal mineralization similar to the feeder proximal mineralization at Tom (Figure 7-17). Like the feeder-proximal mineralization at Tom, End Zone also has a high lead to zinc ratio compared to other mineralization styles.

Figure 7-17: Feeder-Proximal Facies from EZ18-001

Source: Fireweed Metals 2024.

7.2.4 Boundary Zone Deposit

The Boundary Zone area is part of a distinct sub-basin that contains significant volumes of strongly siderite altered basaltic volcaniclastics within and below the Earn Group. Boundary Zone is located adjacent to a major syn-sedimentary fault and also contains large volumes of boulder diamictites indicating that the area underwent active tectonic extension during the formation of the basin, a similar setting to the Tom and Jason areas. The presence of syn-sedimentary faulting, a distinct sub-basin, volcaniclastic inputs rocks, abundant zinc mineralization, and strong alteration indicate the area is host to a robust mineralized system.

At Boundary Zone, where the stratigraphy is more complex, a sequence stratigraphic approach has provided a new framework for understanding and interpreting the spatial and temporal distribution of various lithologies and stratiform mineralized zones. Units have been classified using their lithological and geochemical characteristics and allow identification of key sequences and associated mineralization (Figure 7-18). Known mineralization at Boundary Zone occurs over an area two kilometres long and 200 to 800 m wide. The highest concentration of mineralization occurs within portions of a central area, approximately 750 m in strike, approximately 250 m to 300 m wide, reaching from surface to at least 400 m down-dip, and open at depth.

Boundary Zone mineralization encompasses a variety of textural styles that can be broadly subdivided into two stages: early stratiform fine-grained sphalerite-galena-pyrite mineralization with local zones of massive sulphide; and late coarse vein, breccia, and replacement sphalerite. Zinc-lead-silver mineralization contained within early laminated to massive stratiform sulphide is present in three distinct stratigraphic intervals: Fuller Lake (BZFL), the Upper Zone (BZUZ); and the Prime Zone (BZPZ). Later stage mineralization crosscuts the early laminated stratiform mineralization and occurs along with abundant siderite as: sphalerite-siderite-pyrite and minor galena in veins, breccias, stockworks, massive stratabound sulphides, interstitial disseminations, and as replacement of matrix and clasts within diamictites, chert pebble conglomerates, and coarse carbonate-altered mafic volcaniclastic rocks. For a detailed explanation of Boundary Zone paragenesis see Grema et al. (in review, Economic Geology). For detailed cross-sections of mineralized zones of the Boundary Zone deposit, see Section 14.

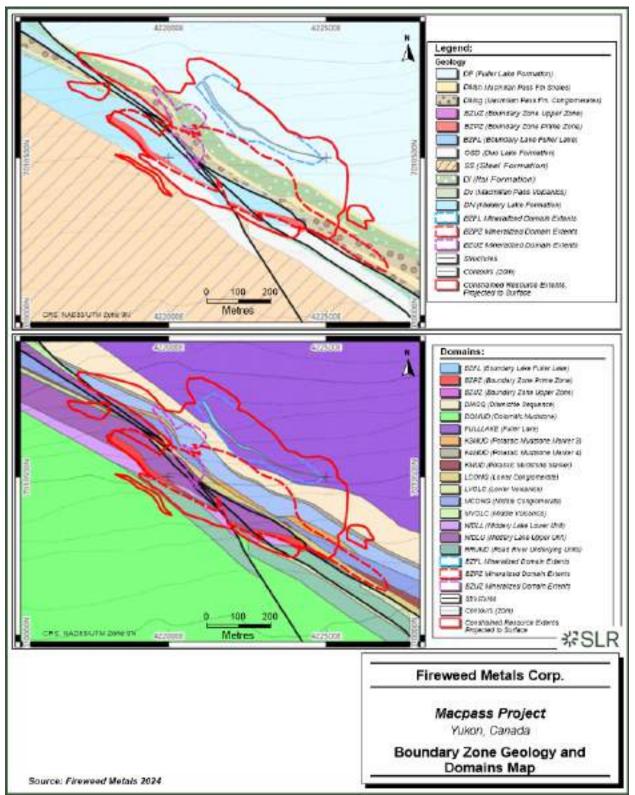


Figure 7-18: Boundary Zone Geology and Domains Map

7.2.4.1 Boundary Zone Fuller Lake (BZFL)

BZFL comprises stratiform laminated to semi-massive sulphide mineralization and dips moderately to the north. BZFL shows good local continuity and is located stratigraphically within the informal Fuller Lake member of the Portrait Lake Formation. This zone is zinc dominant, however, also contains significant amounts of lead and silver (Figure 7-19).

7.2.4.2 Boundary Zone Upper Zone (BZUZ)

BZUZ is primarily hosted in the immediate footwall of the Boundary Main fault and is characterized by laminated sphalerite-galena-pyrite mineralization (similar in style to Tom and Jason) and semi-massive sulphides (Figure 7-20). This unit is interpreted to be part of the Niddery Lake member, Portrait Lake Formation, and Earn Group.

7.2.4.3 Boundary Zone Prime Zone (BZPZ)

The Boundary Zone Prime Zone is a stratiform layer of zinc mineralization comprising massive sulphide, laminated sulphide, and interbedded mudstone and barite (Figure 7-21). The BZPZ is zoned; higher zinc grades are associated with pink laminated sphalerite and zones of sphalerite-rich massive pyrite with minor galena. The massive sulphides transition to more pyrite-rich areas with grey laminated sphalerite laterally, interpreted as more distal to the higher-grade feeder zone. The original sedimentary host rock protoliths were organic rich black mudstones with diagenetic barite layers and barite-rich sequences. Barite commonly occurs as rosettes or "snowflakes" that have been later pseudomorphed by sphalerite, pyrite, or quartz. The barite rich sequence is interpreted as having been replaced by early stratiform sphalerite in the subsurface and then overprinted by later vein mineralization.

The BZPZ forms a significant, continuous body of steeply-dipping, high-grade mineralization at Boundary Zone. It has been traced for approximately one kilometre in strike, at least 400 m in down-dip extent, and varies in true thickness from a few metres to as much as 50 m.

7.2.4.4 Boundary Zone Vein Mineralization

Extensive vein and associated breccia mineralization at Boundary Zone occurs both stratigraphically above and below the stratiform laminated massive sulphide zones described above (Figure 7-22). This mineralization forms a halo approximately 100 m to 150 m wide on both sides of the stratiform laminated zones and is interpreted as a stockwork of randomly oriented veins and breccia zones that are contained within broadly stratiform bodies. It is not restricted to one stratigraphic horizon or lithology; Boundary Zone Vein Mineralization occurs within mudstones, siltstones, diamictites, conglomerates, and volcaniclastics. This vein mineralization accounts for a significant volume of mineralization at Boundary Zone.

There are multiple generations of mineralized veins containing coarse-grained sphalerite±pyrite±siderite±quartz±galena. The coarse vein minerals can also form the cement of hydrothermal breccias, and flood coarse clastic rocks, replacing clasts and matrix. Veins are a wide range of morphologies and sizes, from millimetre-scale erratic stringers to metre-scale zoned veins containing multiple pulses of mineralization. Vein mineralization at Boundary crosscuts the early stratiform mineralization and post dates the formation of steeply dipping, tectonic stylolites. Evidence from drill core shows that these stylolites were commonly exploited as conduits by mineralizing fluids (Figure 7-23).

Figure 7-19: Boundary Zone Fuller Lake NB23-035 Core Photo

Source: Fireweed Metals 2024.

Figure 7-20: Boundary Zone Upper Zone NB23-013 Core Photo

Source: Fireweed Metals 2024.

Figure 7-21: Boundary Zone Prime Zone NB23-028 Core Photo

Source: Fireweed Metals 2024.

Figure 7-22: Boundary Zone Vein Mineralization NB23-029 Core Photo

Source: Fireweed Metals 2024.

Figure 7-23: Hydrothermal Sphalerite Breccia Developed Along a Stylolite, Boundary Zone

Source: Fireweed Metals 2024.

8.0 Deposit Types

The Tom, Jason, End Zone, and Boundary Zone deposits are examples of stratiform, stratabound sediment hosted zinc-lead-silver-barite deposits. Historically the term SEDEX was first used in a report describing the Zn-Pb-Ag deposits of the Selwyn Basin by Carne and Cathro (1982) and subsequently for a period of time, the term was used to describe these deposits worldwide. The term SEDEX has been replaced, however, in favour of more descriptive and less genetic terminology. The stratiform sediment hosted zinc deposit type (also known as clastic dominated (CD) deposits) includes notable examples such as Red Dog (Alaska, USA), Sullivan (British Columbia, Canada), Faro and Howard's Pass (Yukon, Canada), Meggen and Rammelsberg (Germany), Rampura Agucha (India), Garpenberg and Zinkgruvan (Sweden), Tara (Navan, Ireland), and HYC and Century (Australia).

Historically these deposits were considered to have formed strictly at the sediment-seawater interface at seafloor vents within extensional environments. The genetic model for early stratiform mineralization at Tom, Jason, End Zone, and Boundary Zone has subsequently been reinterpreted as a process involving sub-seafloor replacement of diagenetic barite and replacement of porous, poorly consolidated muddy to silty sediment (Magnall 2020).

Mineralization is interpreted to have formed in the sub-surface, below the sediment-water interface either proximal or distal to feeder zones localized along syn-sedimentary (growth) faults (Figure 8-1). These systems contain what was formerly known as vent complexes, now known as feeder complexes. Macpass is one of the rare localities where these feeder complexes are well preserved (Magnall 2020). Distal deposits are largely stratiform in nature in that the mineralized zones are concordant with sedimentary layering, whereas proximal deposits show more complex metal zonation and widespread replacement textures. Proximal deposits show a close spatial correlation with syn-sedimentary feeder faults. A clear understanding of structural geology and stratigraphy are therefore important aspects of exploration for sediment hosted stratiform Zn-Pb-Ag mineralization. Metal ratios, such as Ag/Pb, Pb/(Pb+Zn), Cu/(Zn+Pb), Zn/Fe, and Zn/Ba typically increase towards the feeder zones providing a vector towards the central and potentially higher grade parts of the hydrothermal system. The Tom, Jason, End Zone, and Boundary Zone deposits contain examples of both proximal and distal deposits.

Other important guides to exploration for sediment hosted stratiform Zn-Pb-Ag include (after Goodfellow 2007):

- The presence of footwall feeder zones involving the silicification of the footwall sedimentary package, brecciation, veining, and trace element enrichments (copper (Cu), cobalt (Co), nickel (Ni), molybdenum (Mo), arsenic (As), antimony (Sb), Zn, cadmium (Cd), Pb, and mercury (Hg)).
- Laterally extensive stratigraphic horizons equivalent to the main deposit lens with elevated Zn, Cd, As, and Hg.
- Hanging wall alteration characterized by elevated barium (Ba), Zn, and pyrite enriched in Co, Ni, and Cu.
- The presence of pyrite and/or pyrrhotite in feeder zones that may be detectable by electrical and/or electromagnetic geophysical exploration methods.
- Positive gravity anomalies that may be directly indicative of massive sulphide concentrations and or barite at depth.

Many of the exploration guides described above were developed through extensive research into the Tom and Jason deposits, as well as into other sediment hosted deposits found within the Selwyn Basin. Much of this research was performed by the Geological Survey of Canada (GSC) prior to 1991. Since then, several master's and doctoral theses, as well as research projects have been conducted, leading to a reinterpretation of the genetic model from a strictly exhalative system to one of sub-seafloor replacement.

The current model for formation of replacement-style CD sediment-hosted Zn-Pb-Ag deposits from Magnall et al. (2020) has been successfully applied in discovery of Boundary West in 2020 to 2023 exploration campaigns.

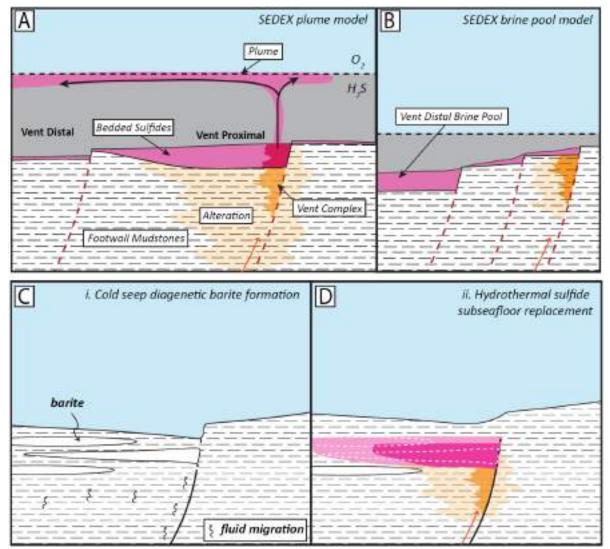
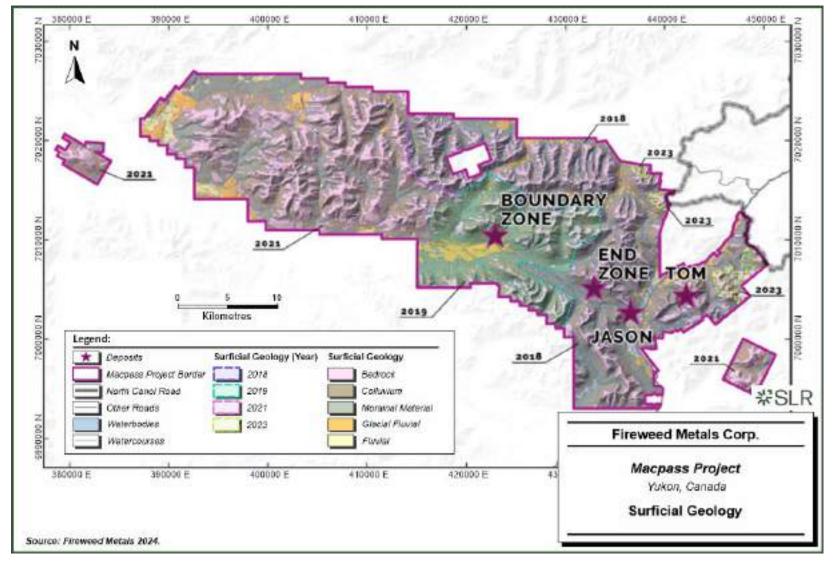


Figure 8-1: Contrasting Models for CD-type Mineralization in the Selwyn Basin

A. The former SEDEX model, modified from Goodfellow et al. (1993). B. The brine pool model, modified from Sangster (2002). C and D. A two-stage model for diagenetic barite formation (C), followed by sub-seafloor hydrothermal replacement (D) from Magnall et al. (2020).

Germanium (Ge) is often found associated with zinc deposits, particularly in sphalerite (ZnS), the primary zinc mineral. Germanium substitutes for zinc within the sphalerite crystal lattice due to its similar ionic radius. Gallium (Ga) can also substitute for zinc in sphalerite but also occurs in association with aluminosilicate minerals, where it substitutes for aluminum.

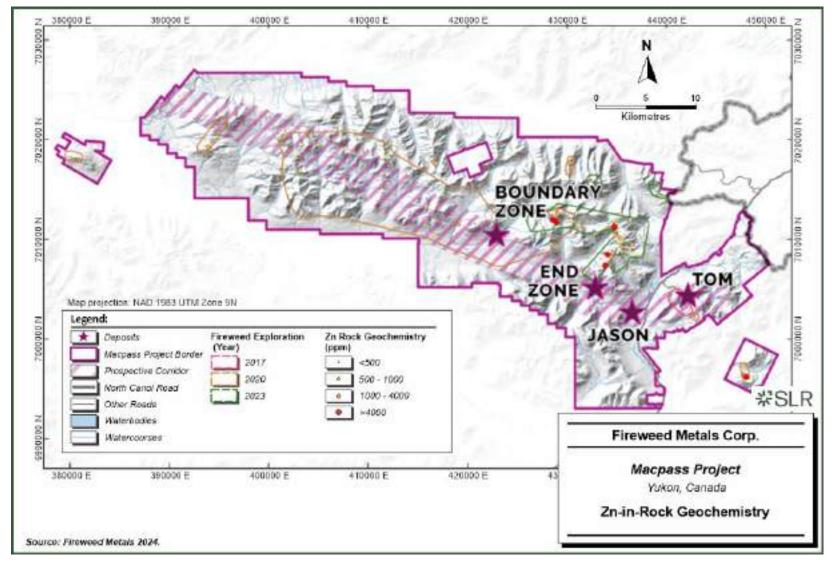
9.0 Exploration


Since 2017, Fireweed has continued to explore at and around the known deposit areas of Tom, Jason, End Zone, and Boundary Zone, as well as carrying out regional programs across the broader property. A particular focus has been along a northwest-trending "prospective corridor" based on favourable geology as well as geophysical and geochemical anomalies. Exploration work has included sufficial and bedrock mapping, prospecting, rock and soil geochemistry, ground gravity surveying, and airborne versatile time domain electromagnetic (VTEM) surveying and LiDAR topographic mapping. This work builds on historical exploration work completed by previous owners and operators and provincial and federal government geological surveys.

Between 2017 and 2023 (inclusive), Fireweed also completed 47,910 m of drilling in 188 holes for exploration, resource expansion, metallurgical, and historical data verification purposes. Drilling is described further in Section 10.

9.1 Surficial Mapping

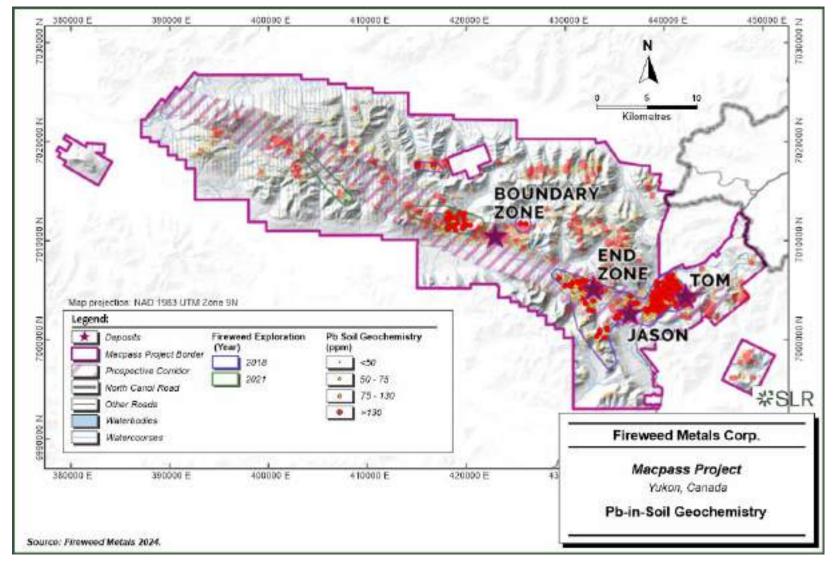
Since 2018, Fireweed has engaged Dr. Derek Turner, P.Geo., to map the surficial geology of the property. This mapping work has improved interpretation of surficial geochemistry by constraining the movement of rock and soil by surficial processes, particularly ice flow during recent periods of glaciation. Surficial mapping data includes near surface permafrost distribution and helps inform geotechnical studies, including potential camp and infrastructure locations. Figure 9-1 shows the extent of surficial mapping completed at the Macpass Project at 1:5,000 to 1:15,000 based on interpretation of high resolution orthophotos, aerial photos, and digital elevation model (DEM) topography from LiDAR surveys, followed by extensive ground truthing during field mapping campaigns in 2018, 2019, 2021, and 2023.



9.2 Bedrock Mapping and Prospecting

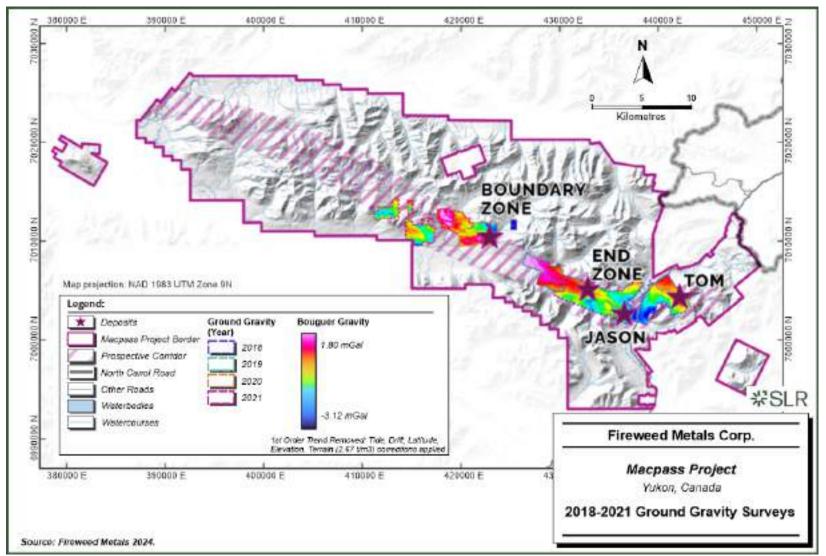
Fireweed geologists have carried out mapping and prospecting programs across the property, including 472 km² at 1:50,000 and 149 km² at 1:10,000 or 1:5,000 over and around deposit areas as well as at targets identified based on prospective stratigraphy and soil geochemistry and geophysical anomalies. Rock sampling has allowed development of a lithogeochemical database that assists geological interpretation and targeting. Rock sample locations and results are shown in Figure 9-2. In 2023, samples were collected primarily from gold exploration targets, however, they generated lithogeochemical data that further informs geological interpretation.

9.3 Soil Geochemistry


The property has extensive historical soil geochemistry data generated primarily in the 1970s, 1980s, and 2010s. Fireweed has completed several soil sampling campaigns in areas of prospective stratigraphy, including two orientation grids across the Tom and Jason deposits. Figure 9-3 shows the sampling locations and Pb-in-soil results, which have been useful in target development. Pb is less mobile than Zn, and has thus been a more reliable indicator of potential buried Zn-Pb-Ag mineralization. Anomalies have been interpreted incorporating ice flow information from surficial mapping work.

Between 2018 and 2021, Fireweed, assisted by Coast Mountain Geological Ltd. (CMG) crews, has collected over 4,600 B and C horizon soil samples in grids of typically 100 m to 200 m spaced lines and 25 m to 50 m spaced samples. In 2018, soil samples for hydrocarbon (SGH) and mobile metal ions (MMI) analysis were also collected over Tom, Jason, and End Zone. B and C soil horizon samples were submitted to Bureau Veritas in Whitehorse for preparation (SS230), aqua regia digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis (AQ250). SGH samples were submitted to ActLabs for soil gas hydrocarbon analysis, and Mobile Metal Ions (MMI) samples were submitted to SGS Laboratories for MMI analysis. Duplicate samples were routinely collected and glacial till certified reference materials (CRMs) inserted, accounting for approximately 5% of total samples. No significant quality assurance and quality control (QAQC) issues were identified.

Pb-in-soil anomalies coincide spatially with known deposits at Tom, Jason, End Zone, and Boundary Zone. Several anomalies northeast and northwest of Boundary Zone and on the northern and western parts of the properly have not yet been fully explored or drill tested.

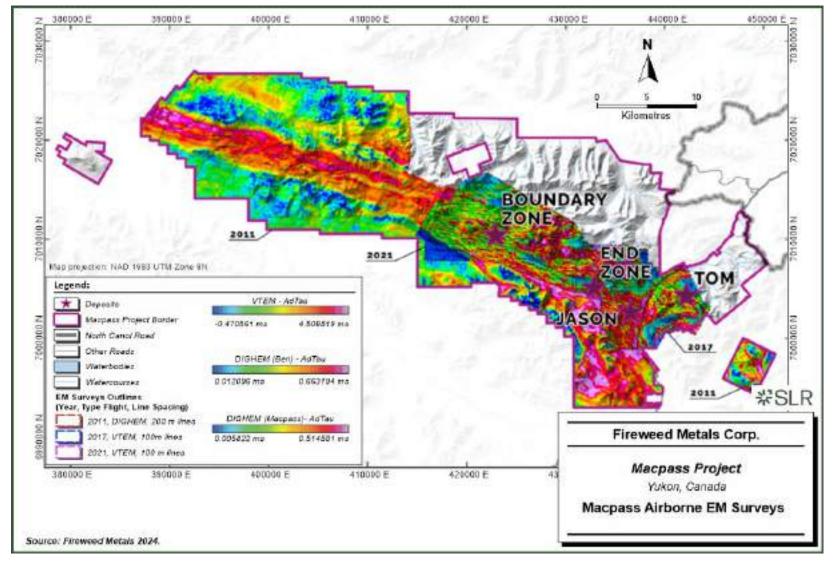


9.4 Ground Gravity Surveying

Aurora Geosciences have completed 67 km² and 9,649 stations of ground geophysical surveys planned by Fireweed geologists since 2018. Surveys have typically been carried out with 50 m station separation on lines 200 m apart, with localized shortened infill lines 50 m apart. Surveys have been completed over and around the Tom, Jason, End Zone, and Boundary Zone deposits. Surveys were designed to test deposit signatures and cover areas of prospective stratigraphy that coincide with soil geochemistry anomalies, primarily along the northwest-trending mineralized corridor.

Ground gravity surveys have successfully defined targets based on density contrast and contributed to the discovery of massive sulphides at Boundary West in 2020. Other gravity anomalies along the mineralized corridor remain untested.

Figure 9-4: 2018-2021 Ground Gravity Surveys


9.5 Electromagnetic (EM) and Magnetic Surveys

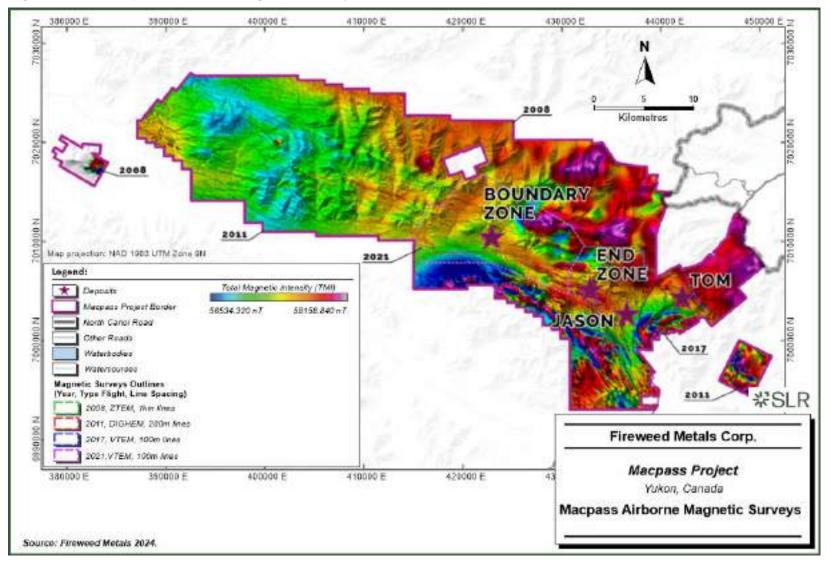

In 2017 and 2021, Geotech consultants completed airborne VTEM and magnetic surveys over the Tom, Jason, End Zone, and Boundary Zone deposits. Fireweed has used the results of this survey to map subsurface geology, particularly faults, to improve understanding of property and deposit geology and identify new drill targets and potential extensions of known mineralization.

Figure 9-5 shows the extent of EM surveys to date, covering 205 km². Surveys were flown at 100 m spacing on a north-northeast bearing, covering approximately 2,300 line km total. A ZTEM survey was also completed in 2011 by Colorado Resources over the western half of the property (the Sol and Oro claims at the time). In 2022, Condor Consulting, Inc (Condor) merged and levelled existing EM datasets to provide a single working dataset for the whole Macpass Project property.

Figure 9-6 shows results of Fireweed's 2017 and 2021 magnetic surveys, Colorado Resources' 2011 survey, and a 2008 regional Yukon Government survey. Datasets were also merged and levelled by Condor in 2022 to provide a property-wide magnetic dataset.

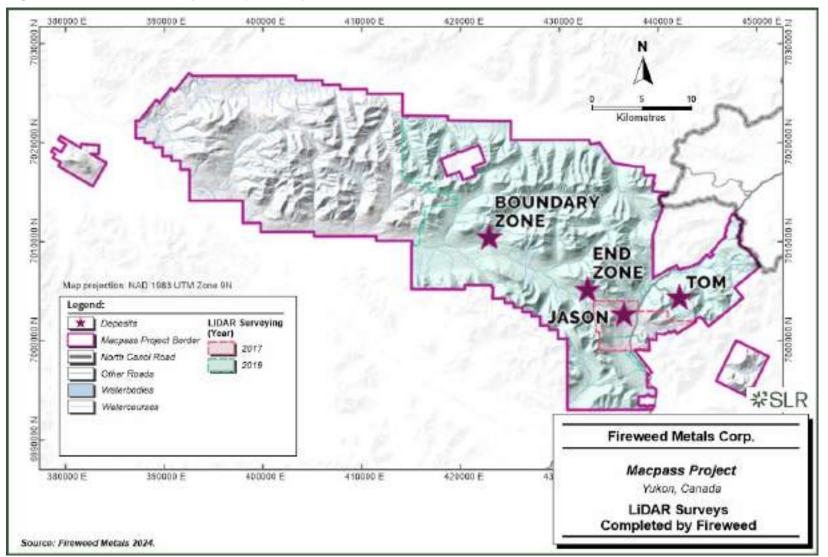


Figure 9-6: Macpass Airborne Magnetic Surveys

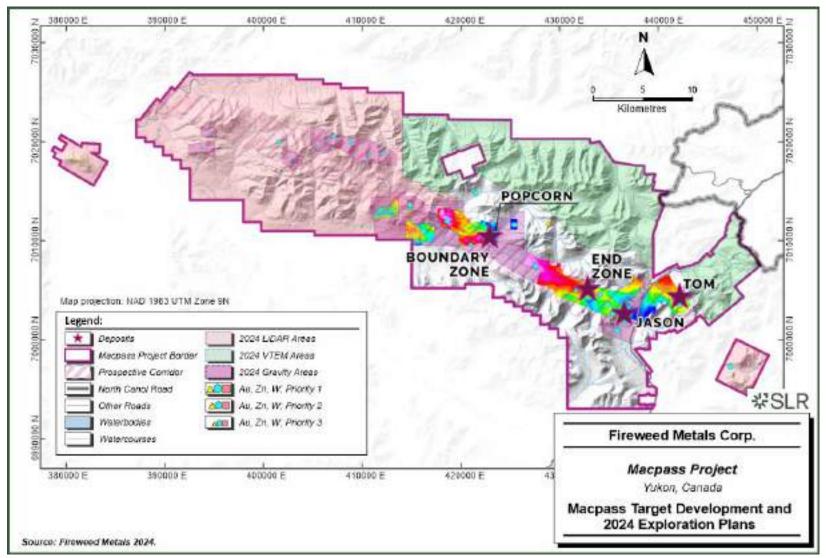
9.6 LiDAR Topographic Mapping

Since 2017, Fireweed has contracted McElhanney Ltd. to complete 545 km² of LiDAR surveys over the property. LiDAR produces a one metre cell-size resolution, centimetre-scale accuracy DEM that serves as robust topographic map to inform geological and engineering mapping and planning work. High definition 20 cm resolution orthophotos were captured at the same time. Figure 9-7 shows the extent of LiDAR coverage to date.

Figure 9-7: LiDAR Surveys Completed by Fireweed

9.7 Exploration Potential

During the 2020 drill season, Fireweed discovered stratiform laminated mineralization at Boundary Zone in Cambrian-Ordovician Road River host rocks. Prior to this discovery, Zn-Pb-Ag mineralization had only been observed in younger Devonian-Mississippian Earn Group host rocks at Macpass. The discovery has expanded the search space for Zn-Pb-Ag mineralization across the property, as areas of Road River sedimentary rocks had not previously been considered prospective.


The western half of the property remains underexplored for Zn-Pb-Ag mineralization, and contains prospective stratigraphy continuing beyond Boundary Zone along a northwest trend, or prospective corridor, that includes Tom and Jason. Combining airborne and ground-based geophysical interpretations with soil geochemical results generated by extensive property-wide soil sampling programs has generated multiple targets across western and northern parts of the property.

The Macpass Project lies within the Cretaceous Tombstone-Tungsten Belt (TTB), known to host reduced intrusion related gold systems (RIRGS) and tungsten-copper-gold (W-Cu-Au) skarn occurrences and deposits nearby (see Section 23). Several mid Cretaceous intrusions crop out on the property (Figure 7-3), and the presence of buried intrusions is inferred based on characteristic responses in airborne magnetic surveys. Rock and soil geochemistry anomalies are also used to guide RIRGS and W-Cu-Au skarn exploration.

The recently completed 2024 exploration program at Macpass included airborne LiDAR and VTEM-magnetic surveys covering all remaining unsurveyed parts of the property (Figure 9-8), as well as ground gravity surveys on both local (7,700 stations) and regional (400 stations) scale grids, collection of 7,800 soil samples, and widespread prospecting and mapping. The primary focus has been on sediment hosted Zn-Pb-Ag targets, however, programs are designed to explore the property in a commodity agnostic manner, recognizing the potential for RIRGS and W skarn deposits.

Fireweed also completed over 16,000 m of diamond drilling in 2024 that did not inform this MRE but did include drilling at known deposits as well as several exploration targets. This included drilling and a new discovery at Popcorn, 600 m northeast of Boundary Zone (Fireweed News Release dated October 8, 2024).

As datasets are received from the 2024 field program, data will be integrated alongside extensive historical datasets to identify new targets and evaluate existing targets to advance them to drill-ready prospects while working towards new discoveries (Figure 9-8).

Figure 9-8: Macpass Target Development and 2024 Exploration Plans

The Tom, Jason, and Boundary Zone deposits all offer potential for resource expansion, along with opportunities to identify new targets.

Tom Deposit: The mineralization at Tom West remains open at depth, with several drill holes from 2023 extending the mineralization down dip, showing true thicknesses exceeding 25 m. Similarly, Tom Southeast has shown potential for deeper mineralization, with thickness increasing toward the Tom Fault. Due to the depth of these targets, drill holes exceeding 700 m will be required.

Jason Deposit: The mineralization at Jason Main remains open at depth, with the central fault block showing the most potential among the three faulted portions of the deposit. Mineralization in the central fault block has a true thickness of approximately 3.7 m. Jason South also shows potential for down-dip expansion, with mineralization thicknesses exceeding 20 m in the central fault block. Drilling in 2023 focused on expanding to the southeast, with positive results at depth, however, additional drilling at depths of over 600 m will be necessary to explore the eastward strike and depth extensions. Further drilling in areas intersected by faults at Jason South may help refine the understanding of fault positions and the distances of mineralization offsets.

Boundary Zone: This zone remains an active discovery with expansion potential both along strike and at depth. Faulting has displaced some of the higher-grade mineralization in the BZUZ and BZPZ zones. The SLR QP recommends targeting these fault offsets to better define the shape and extent of the massive to semi-massive sulphide mineralization. Additionally, drilling should focus on strike extensions to the northwest and at depth, following up on previous holes NB21-003, NB21-004, NB23-029, and NB20-009.

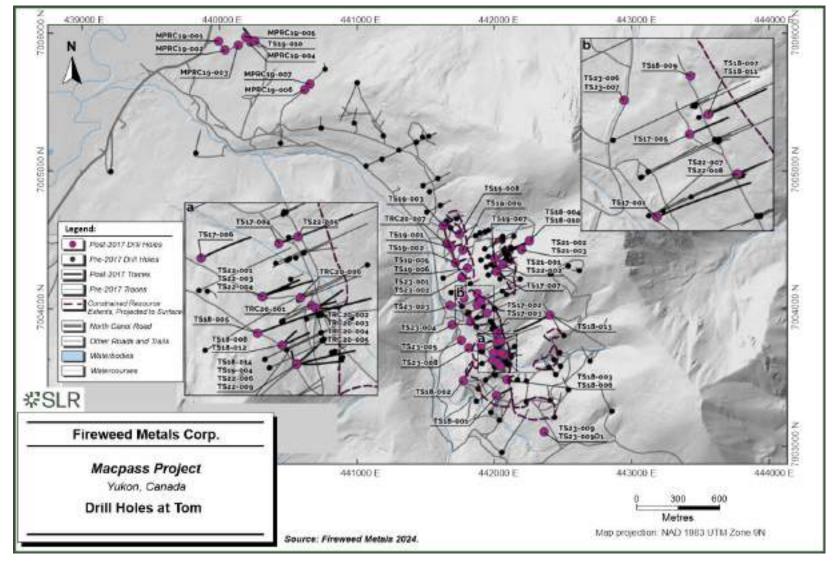
The SLR QP recommends that Fireweed continue to adopt a balanced approach to evaluating resource expansion targets, weighing the costs and benefits of near-surface opportunities at Boundary Zone while considering the deeper potential at Tom and Jason.

10.0 Drilling

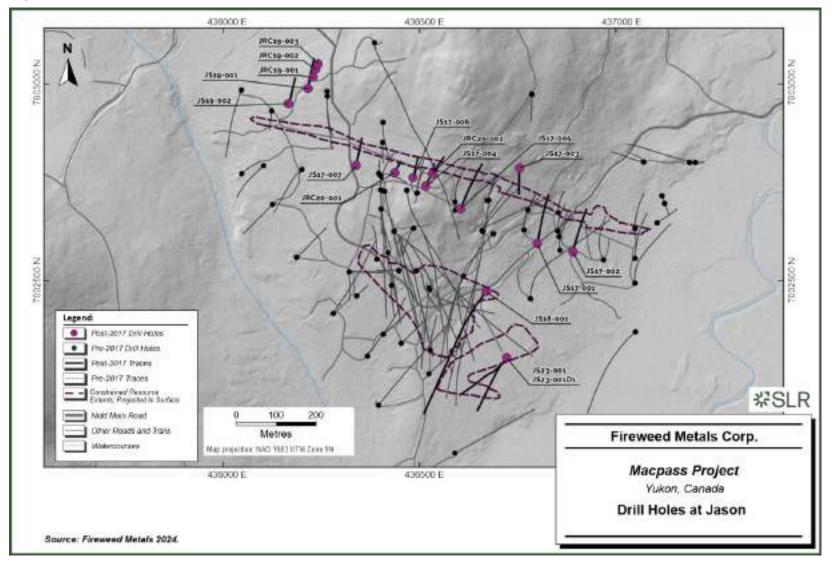
Prior to Fireweed ownership, various owners and operators (primarily Hudbay, Cominco, Ogilvie JV, Pan Ocean, Phelps, AGIP, and Colorado Resources) completed 85,484 m of drilling in 403 historical drill holes across the property between 1952 and 2013. From this historical drilling, 80,117 m was completed in 370 historical drill holes in proximity to the Tom, Jason, End Zone, and Boundary Zone deposits that are the subject of this Technical Report. Table 10-1 summarizes drilling by deposit area, year, and operator. Figures 10-1 to 10-4 illustrate historical drilling. In 2017, Fireweed completed a further 2,203 m drilling in 14 drill holes that, combined with historical drilling, was used to inform the 2018 Tom and Jason MRE.

Between publication of the 2018 MRE and end of the 2023 drill season, Fireweed completed an additional 43,902 m of drilling in 174 drill holes. Of this, 42,311 m were in 160 holes in deposit areas and used to inform the present MRE. The remaining drilling totalling 1,590 m in 14 drill holes tested regional targets away from deposits. Fireweed drilling is summarized in Table 10-1 and highlighted in Figures 10-1 to 10-4. Core processing and sampling procedures are described in Section 11.

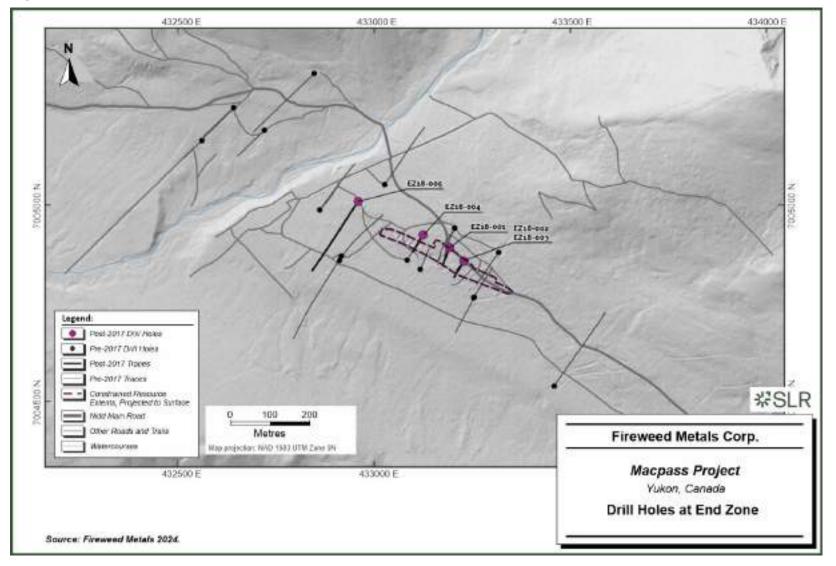
Drilling between 1952 and 2011 was predominantly diamond drilling in HQ, NQ, BQ, BX, or AX size. Fireweed has completed all diamond drilling since 2017 in HQ, HQ3, NQ, or NQ2 size. In 2019 and 2020, Fireweed also completed 622 m of reverse circulation (RC) drilling at Tom, Jason, and several regional targets.

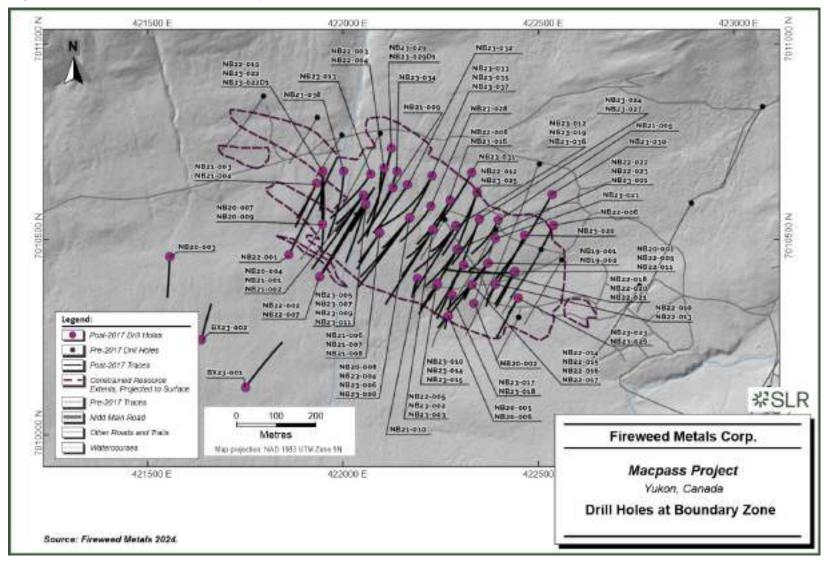

Recovery is typically greater than 85%. This is captured by routine geotechnical logging for every hole top to bottom on a run-run basis. Five historical holes with significant low recovery intervals were successfully twinned by Fireweed to verify geological observations and assay results. These twin holes were completed with much improved recovery at greater than 85%.

	Tom		Jason			End Zone			Boundary			Exploration			
Year	Operator	Drill holes	Total m	Operator	Drill holes	Total m	Operator	Drill holes	Total m	Operator	Drill holes	Total m	Operator	Drill holes	Total m
1952		27	3,793												
1953		12	1,643												
1967	-	10	1,691												
1968		16	3,164												
1970		57	2,556												
1971		8	1,312												
1974			•												
1975					7	692									
1976					15	2,161									
1977	HudBay			Ogilvie JV	6	1,405									
1978		5	587		17	3,082									
1979		15	2,295		10	1,939	Cominco	1	215				Cominco	1	288
1980		12	1,408		14	4,782	Ogilvie JV	6	1,076						
4004	1	40	4.004	Bon Occor	26	13,444	Cominco	4	864						
1981		13	1,064	Pan Ocean	26	13,444	Pan Ocean	2	924						
1982		2	302		5	3,198					4	1,242			
1983				Aberford						Cominco	5	1,758	Cominco	1	100
1984				Aberiora						(Teck)	3	1,186			
1985													AGIP	8	1135
1988		4	2,226										AGIF	10	1230
1989	Cominee	4	2,175								2	479			
1990	Cominco	7	4,400	Dhalpa	12	2,667					6	1,352			
1991		8	2,884	Phelps	7	2,217	Phelps	1	336		6	1,768			
2011		11	1,831												
2012	HudBay			Hudbay			Hudbay						Colorado	12	2502
2013														1	112


Table 10-1: Summary of Drilling on the Macpass Property

	Tom		Jason		End Zone			Boundary			Exploration				
Year	Operator	Drill holes	Total m	Operator	Drill holes	Total m									
2017		7	937		7	1,267									
2018		14	4,083		1	678		5	743						
2019	Fireweed	15	1,383		4	249	Fireweed			Fireweed	2	666	- Fireweed -	11	306
2020		7	399	Fireweed	3	128					9	2,318		1	632
2021		3	853	1							10	2,998			
2022		9	1,511								23	5,564			
2023		11	3,412		2	1,042					42	16,284		2	652
1952-2017		218	34,267		126	36,853		14	3,415		26	7,786		33	5,367
2018-2023		59	11,642		10	2,097		5	743		86	27,830		14	1,590
Deposit Total		277	45,909		136	38,950		19	4,158		112	35,615		47	6,957
Deposit Holes								544							
Deposit m							12	24,632							
Total Drill Holes								591							
Total m							13	81,589							





10.1 Core Storage

In 2015, Hudbay carried out an inventory at the former core processing and storage location in the valley below the Tom West zone of the Tom deposit and reported 79 historical drill holes comprising approximately 4,000 boxes and 11,500 m of core. Some pallets were covered by thick vinyl covers.

Most Tom, Jason, and End Zone core has since been moved to Fireweed's new core processing facility at the Sekie Camp, where core from Fireweed's drill programs (2017-present) is also stored. Core boxes are stored outside and cross-piled on pallets, with lidded top boxes for holes drilled by Fireweed. Historical drill core from Boundary Zone is stored in racks at the site of the former Cominco Nidd camp.

Some historical core has been donated to the Yukon Geological Survey H.S. Bostock Core Library in Whitehorse where it is accessible for viewing, and with permission, for sampling. This donated core includes 70 drill holes from the Tom deposit, primarily from underground, and 20 drill holes from Jason (including two End Zone holes). Some Tom core drilled from surface prior to 1975 was dumped in with mine waste and covered during rehabilitation of the site in 2010.

11.0 Sample Preparation, Analyses, and Security

Fireweed has carried out exploration activities, including drilling, at Macpass every year between 2017 and 2023. All other data are historical in nature. Drilling can be divided into three distinct phases of drilling and sampling: historical drilling prior to 2011, drilling by Hudbay in 2011, and 2017-2023 drilling by Fireweed.

11.1 Pre-2011 Sample Preparation and Analyses

11.1.1 Pre-2011 Sample Preparation and Analyses

Sampling procedures, core handling, sample security, and analytical methodology are not available for all historical drill holes. Historical core from Tom, Jason, and End Zone is stored at Tom and Sekie camps. It was previously stored either inside a metal shed at Tom Camp or cross stacked outside in the surrounding area. Jason and End Zone core was moved from a shed on the east bank of the South Macmillan River to the Tom Camp storage location by Hudbay between 2011 and 2015. The Tom camp metal shed was previously nailed shut when the site was unoccupied and was not locked. Fireweed is currently relocating historical core from Tom Camp core storage to Sekie Camp core storage to minimize the risk of damage by avalanche at the Tom Camp core storage location. Historical core from Boundary Zone is stored in racks just south of a tributary of the Hess River south of the Boundary Zone deposit at the former Cominco Nidd Camp location. Seventy Tom holes and 20 Jason holes (including two End Zone holes) are stored in a secure government warehouse at the H.S. Bostock (Yukon Government) Core Library in Whitehorse.

Pre-2011 core samples were collected using a diamond saw or blade splitter. Previous laboratories used include Bondar Clegg and Company Ltd, Chemex Labs Ltd., Cominco's Exploration Research laboratory, and the Hudbay laboratory, all of which are independent of Fireweed. The Cominco Exploration Research laboratory and Hudbay laboratory were not independent of Cominco and Hudbay when they operated their respective drill programs.

Assay certificates for some historical analyses are available for the Tom deposit from the 1980s and the Boundary Zone deposit from the 1980s and 1990s. Fireweed carried out a full database validation exercise in 2023-2024, described in Section 12.

11.1.2 Pre-2011 Sample Security

There are no records of historical sample security procedures. Samples were transported from Macpass to various independent and company-operated laboratories.

11.1.3 Pre-2011 Quality Assurance and Quality Control

There are few records available for historical drilling, core-handling, QAQC, or analytical methodologies. Despite incomplete documentation for historical assays, in 2018, it was CSA Global's opinion that historical sample preparation and analysis were carried out using industry standard procedures for that time by reputable laboratories. The SLR QP concurs with CSA Global. Additionally, CSA Global found no reason to suspect that analytical results contained in the historical Tom and Jason drill database are not representative of in situ mineralization and considered the data adequate for the purposes of the 2018 MRE and Technical Report (Arne and McGarry 2018). The SLR QP shares this view and finds no reason to question the reliability of the analytical results in the historical Tom and Jason drill database used for the current Mineral Resource.

A subset of available drill holes from Tom, Jason, and Boundary Zone have been resampled by Fireweed to verify historical results. Further details are provided in Section 12. The resampling program provided additional confidence to validate the historical assay data as adequate.

11.2 2011 Sample Preparation, Analyses and Security

An 11 hole, 1,831 m drill program was carried out at Tom by Revelation Geosciences (Revelation) on behalf of Hudbay (Wells, 2012). The following details on 2011 sample preparation, analyses, security, and QAQC are included below from the 2018 Mineral Resource Technical Report (Arne and McGarry 2018).

11.2.1 2011 Sample Preparation and Analyses

Drill core was halved for sampling using a diamond saw at Tom Camp. Quarter core was sampled for assay where the half core was required for metallurgical testing. Samples for analysis were collected into polypropylene bags.

11.2.2 2011 Sample Security

Security of samples prior to dispatch to the analytical laboratory was maintained by limiting access of unauthorized persons to the site. Samples were stored in a secure storage area at Tom Camp. Detailed records of sample numbers and sample descriptions provided integrity to the sampling process. Labelled sample bags were packed into polypropylene rice bags and sealed for shipping. Samples remained under the supervision of Revelation personnel while on site at the project and during delivery to ACME Labs (ACME, now Bureau Veritas) preparation facility in Whitehorse. ACME completed sample preparation in Whitehorse and employed bar code and scanning technologies that provided complete chain of custody records for every sample. Master pulps were then shipped by ACME to their Vancouver laboratory for analysis.

The ACME Whitehorse preparation facility is certified to standards within ISO 9001:2008. The Vancouver analytical facility was certified to standards within ISO2 9001:2008 and, at the time of the 2011 program, was in the process of accreditation to ISO/IEC 17025:2005 from the Standards Council of Canada (SCC). ISO/IEC 17025:2005 accreditation conforming to requirements of CAN-P-1579 and CAN-P-4E was received in October 2011 for methods including the determination of Ag, Cu, Pb, and Zn by multi-acid digestion with an atomic absorption spectrometry (AAS) finish. It is the SLR QP's opinion that ACME sample preparation procedures and analytical methods are routine and follow industry best practices and procedures. CSA Global noted that ACME's ISO/IEC 17025:2005 accredited analytical methods do not include those utilized for the analysis of 2011 drill core samples.

ACME (Bureau Veritas) and its employees are independent from Fireweed, CSA Global, Hudbay, and 2011 consultants Revelation. Hudbay and Revelation personnel, consultants, and contractors were not involved in the 2011 laboratory sample preparation or analysis.

Drill core samples from the Tom deposit were analyzed by ACME following crushing and pulverization of the samples to greater than 85% less than 75 microns. The pulps were analysed for a suite of 24 elements using inductively-couple plasma optical emission spectroscopy (ICP-OES), including base metals, following a hot modified aqua regia digestion consisting of a 1:1:1: ratio of HCI:HNO₃:H₂O (ACME group 7AR, Bureau Veritas equivalent code AQ270). Samples with greater than 4% Pb or 20 % Zn were re-digested using a dilution to obtain data within range for the ICP-OES. Two samples with greater than 300 ppm Ag were also re-analysed by fire assay. Barium was determined by fused disc X-ray fluorescence (XRF) (ACME group 8X-Ba, Bureau Veritas equivalent LF725). Gold was determined by aqua regia

digestion of a 15 g charge (ACME group 3A01) as a preliminary check of gold levels, there being few previous analyses. It was not intended to provide rigorous gold assay data.

11.2.3 2011 Quality Assurance and Quality Control

Several in-house CRMs manufactured from Flin Flon, Manitoba area base metal material and supplied by Hudbay were included with the core sample submissions. These were A5 (seven samples), B5 (seven samples), E5 (seven samples), and the base metal blank F6 (42 samples). As the samples are not matrix-matched to the sediment-hosted base metal mineralization at Tom, two additional Pb-Zn-Ag CRMs manufactured from base metal material from the Mount Isa district in Australia were purchased from Ore Research & Exploration and included in the sample submission – OREAS 133a (six samples) and 134a (nine samples). In addition, data for two ACME internal CRMs, OREAS 131b (27 analyses) and Geostats GBM997-6 (19 analyses) were also assessed. OREAS 131b is a low-grade Pb-Zn-Ag CRM made from the same material as OREAS 133a and 134a, and GBM997-6 is a high-grade Pb-Zn CRM.

A summary of CRM performance is provided in Table 11-1. Samples with a bias and no failures lie mainly within two standard deviations of the calculated mean for the CRMs (i.e., the expected value). A failure is considered to be any analysis that lies more than three standard deviations away from the expected value, or two consecutive analyses with the same bias (positive or negative) more than two standard deviations from the expected value.

CRM	No.	Pb	Zn	Cu	Ва	Ag
HBMS A5	7	NA	NA Positive bias		NA	NA
HBMS B5	7	NA	Positive bias	Negative bias	NA	NA
HBMS E5	7	Acceptable	Positive bias	Excellent	NA	Positive bias
HBMS F6	42	No failures	1 failure	No failures	NA	No failures
OREAS 133a	6	Negative bias	Acceptable	Negative bias	2 failures	6 failures; positive bias
OREAS 134a	9	1 failure	3 failures	2 failures; positive bias	3 failures	1 failure; positive bias
OREAS 131b	27	6 failures; negative bias	Acceptable but with drift	Not assessed	Not assessed	9 failures; positive bias
GBM997-6	19	1 failure; negative bias	Negative bias	NA	NA	NA
Note: NA = not ap	olicable	1	L		u	1

 Table 11-1:
 Summary of CRM Performance for 2011 Assays

The Hudbay CRM F6 is not an ideal blank material because the material is already pulverized and thus does not pass through the crushing and pulverizing stream at the laboratory. Therefore, the blank tests only for laboratory contamination during digestion and analysis. Aside from a single instance of probable Zn cross-contamination, the SLR QP is of the opinion that the results are acceptable when the data are filtered to remove all results within an order of magnitude of the lower limit of detection.

It is the SLR QP's opinion that the evaluation of precision was limited after an assessment of pulp duplicate analyses provided by ACME. This estimate of laboratory precision does not include any variance introduced during the sample preparation stages and assessed only the combined effects of subsampling the final pulp, sample digestion, and instrumental uncertainties. The analysis used the square root of the average relative variances for individual duplicate pairs, known as the relative standard deviation (RSD), following the root mean square (RMS) method of Stanley and Lawie (2007). The data were filtered to remove any values within an order of magnitude of the lower limit of detection, as these data are inherently imprecise. The results of this analysis for the main commodity elements are summarized in Table 11-2. There were insufficient silver data for pulp duplicates greater than an order of magnitude above the detection limit to allow an assessment of laboratory precision for silver. The results for lead, zinc, and barium are all less than 5% and considered to be best practice for base metals assays (Abzalov 2008). In general, the RSD for pulp duplicate pairs decreases with increasing grade.

11.2.3.1 2011 Check Assays

Pulp splits from 38 samples processed by ACME were obtained and submitted to ALS Minerals of North Vancouver (ALS North Vancouver) with OREAS 133a and 134a for check assays. The ALS North Vancouver analytical facility is individually certified to standards ISO 9001:2008 and has received accreditation to ISO/IEC 17025:2005 from the SCC for methods including: fire assay Au by AAS; fire assay Au and Ag by gravimetric finish; aqua regia Ag, Cu, Pb, Zn, and Mo by atomic absorption (AA); and aqua regia multi-element analysis by ICP-OES and ICP-MS. It is the SLR QP's opinion that ALS North Vancouver sample preparation procedures and analytical methods are routine and follow industry best practices and procedures.

ALS and its employees are independent from Fireweed, CSA Global, Hudbay, and 2011 consultants Revelation. Hudbay and Revelation personnel, consultants, and contractors were not involved in the 2011 laboratory sample preparation or analysis.

The analytical methods used by ALS North Vancouver were similar to those used by ACME: Lead, zinc, silver, sulphur (S), and iron were analyzed by ICP-OES following an aqua regia digestion (ALS method ME-OG46); Barium was analyzed by fused disc XRF (ALS method Ba-XRFc); Gold was analyzed by 30 g fire assay to check the validity of the aqua regia Au data from ACME (ALS method Au-ICP21). The data for the two CRMs submitted with the check assays are acceptable. While gold values by fire assay are systematically higher than those obtained by aqua regia, the values are all typically only an order of magnitude above background levels and are not considered economically significant.

Aside from barium, the other main commodity elements show a negative bias in the check assay results compared to the original assays (Table 11-2), indicating that the original ACME data are slightly higher, on average, relative to the check assays from ALS North Vancouver. In the case of zinc, this bias occurs at all grades and is consistent with the positive bias shown by some of the CRMs submitted to ACME (Table 11-2). By contrast, the negative bias is strongest at lower grades in the case of lead and may even give way to a positive bias at higher grades, consistent with the bias observed from the CRMs (Table 11-2). The negative bias in the silver check assays is also supported by a positive bias in the ACME silver data for the CRMs (Table 11-2). These biases appear to account for most of the variation between the two datasets.

Element	Pb	Zn	Ва	Ag				
Precision (average % RSD)	3.9	4.9	2.4	NA				
Bias (average % relative difference)	-10	-5	1	-6				
Note: NA = not applicable								

Table 11-2: Summary of Laboratory Precision and Bias from Check Assays for 2011

Fireweed verified 2011 assay certificate values against values in the current drill database and found no discrepancies between certificates and the database (further validation details are included in Section 12).

11.3 2017-2023 Sample Preparation and Analyses

Fireweed's 2017 drill program was managed and executed by Equity Exploration Consultants (Equity) and the 2018-2023 drill program was executed by Fireweed, with support from CMG. Sample preparation, analytical procedures, security, and QAQC are described below. QAQC results have been reviewed annually by Dennis Arne, P.Geo., a consultant of CSA Global (2017 to 2019 programs) and Telemark Geosciences (2020 to 2023 programs).

11.3.1 2017-2023 Sample Preparation and Analyses

Fireweed 2017-2023 diamond drill core logging and sampling programs were carried out under rigorous QAQC programs using industry best practices. Diamond drill holes were HQ, HQ3, NQ, or NQ2 size core with recoveries typically greater than 85%. After drilling, core was cleaned, logged for geology, structure, and geotechnical characteristics, and then marked for sampling and photographed on site. Certain cores were selected for scanning with a core scanning technology from GeologicAI. Data captured by core scanning includes dry and wet high-resolution images, RGB, LiDAR, and hyperspectral (very near infrared (VNIR) and short-wave infrared (SWIR)) data, mineralogical and alteration assemblage identification, and XRF elemental data, which are all used to inform geological logging and interpretation.

The cores for analyses were marked for sampling based on geological intervals with individual samples two metres or less in length, with one metre samples within mineralized zones. Drill core was cut lengthwise in half with a core saw; half of the core was sent for assay and the other half was stored on site for reference. Some drill holes were selected for metallurgical test work and for these holes, quarter core was sent for assay, with half core sent for metallurgical testing, and quarter being returned to the core box for future reference.

Bulk density was determined on-site for the entire length of each assay sample using the Archimedean method, which involves measuring the dry mass in air and the mass in water (water displacement). Due to the very fine- to fine-grained nature of mineralization and host rocks, void space and porosity were extremely low, and wax wrapping was deemed unnecessary. A subset of samples was also measured at Bureau Veritas using gas pycnometer method on pulps (code SPG04); field measured and lab measured bulk densities showed very good agreement, indicating the current field method is appropriate.

Fireweed uses OHaus Ranger Count 7000 scales that report a bulk density reading in addition to measured dry and wet sample masses. To validate bulk density, scale readings and calculated readings were compared. Any reading that fell outside of 10% of the calculated reading was investigated and flagged as invalid. Bulk density readings that reported less than 2 g/cm³ or greater than 7 g/cm³ were also investigated. Sample duplicate bulk density determinations and in-house bulk density standard determinations were each made at a rate of

5%, at approximately every 20 samples. Since 2017, four in-house bulk density standards (mineralized drill core from the Tom deposit that span a range of densities) have been used and show an acceptable long term precision (see Section 11.3.4 below). Certified standard masses are used to calibrate the scale balance at the start of every season.

A total of 26 holes in 2019 and 2020 were drilled by a RC drill, producing RC cuttings that were sampled using a riffle splitter at the drill rig. A small split was archived in trays and logged for geological characteristics. Samples were sent to Bureau Veritas for preparation and assays, being pulverized and analyzed in the same way as diamond drill core detailed below. Specific gravity (SG) was measured on RC pulp samples using the gas pycnometer at Bureau Veritas (noted as LAB-SPG04 in the database).

A total of 5% assay standards or blanks and 5% core duplicates were included in the sample stream as a quality control measure and were reviewed after analyses are received. Standards and blanks in 2017-2023 drill results have been approved as acceptable. Duplicate data add to the long term estimates of precision for assay data on the Project and precision for drill results reported was reviewed by the SLR QP and deemed to be within acceptable levels.

With the exception of samples from NB23-030 and NB23-031, 2017-2023 samples were sent to Bureau Veritas in Whitehorse, Yukon, where the samples were crushed and a 500 g split was sent to the Bureau Veritas laboratory in Vancouver, British Columbia to be pulverized to 85% passing 200 mesh size pulps. Clean crush material was passed through the crusher and clean silica was pulverized between each sample. The pulps were analyzed by 1:1:1 agua regia digestion followed by inductively-coupled plasma emission spectroscopy/mass spectrometry (ICP-ES/ICP-MS) multi-element analyses (BV Code AQ270). All 2018-2023 samples were also analyzed for multiple elements by lithium borate fusion and XRF finish (BV Code LF725); overlimit lead (>25%) and zinc (>24%) were analyzed by lithium borate fusion with XRF finish (BV Code LF726). For the 2017 drill program, samples with AQ270 elevated values of lead (>4%) and zinc (>8%) were further analyzed by multi acid digestion with AAS finish (BV Code MA404) and barium was analyzed on a separate pulp split at MS Analytical in Langley, British Columbia, using lithium borate fusion with acid digestion and ICP-ES finish (MS Code WRA-3Ba). Historical Tom and Jason core resampled in 2017 were analyzed using AQ370, another aqua regia digestion with ICP-ES finish with higher detection limits for some elements than AQ270. Samples from 2017-2023 that contained greater than or equal to 1,500 ppm Zn were further analyzed for gallium (germanium using hydrofluoric acid (HF) + aqua regia closed vessel digestion and ICP-MS finish (BV Code GC204). For Fireweed's Bureau Veritas samples, silver is reported in this database by method AQ270, and zinc and lead are reported by LF725 or LF726, or for 2017 samples by AQ270 up to 4% Pb or 8% Zn, or MA404 for over-limit samples. Gallium and germanium are reported by method GC204. Any 2017 samples with higher overlimit lead (>20% in MA404) or zinc (>30% in MA404) are reported by classical titration methods GC817 or GC816 respectively. Samples from NB23-030 and NB23-031 were sent to AGAT Laboratories (AGAT) in Calgary, Alberta. Samples were crushed, and then a 500 g split was pulverized to 90% passing 75 microns. Clean crush material was passed through the crusher and clean silica was pulverized between each sample. The pulps were analyzed by agua regia digestion followed by ICP-ES/ICP-MS multi-element analyses (AGAT Code 201-074). All samples were also analyzed for multiple elements by lithium borate fusion and XRF finish (AGAT code 11-323). For AGAT samples, silver is reported in this database by method 201-074, and zinc and lead are reported by 11-323. AGAT samples containing greater than or equal to 1,500 ppm Zn were also analyzed for gallium and germanium at Bureau Veritas and are reported by method GC204. Bureau Veritas (Vancouver) and AGAT (Calgary) are independent, international ISO/IEC 17025:2017 accredited laboratories.

Samples from NB23-030 and NB23-031 were sent to AGAT, in Calgary, Alberta. Samples were crushed, and then a 500 g split was pulverized to 90% passing 75 microns. Clean crush material was passed through the crusher and clean silica was pulverized between each sample. The pulps were analyzed by aqua regia digestion followed by ICP-ES/ICP-MS multi-element analyses (AGAT Code 201-074). All samples were also analyzed for multiple elements by lithium borate fusion and XRF finish (AGAT code 11-323). For AGAT samples, silver is reported in this database by method 201-074, and zinc and lead are reported by method 11-323.

Assays acquired by Fireweed drilling since 2017 were not checked by Fireweed during their comprehensive database validation in 2023-2024 because since 2017, results have been directly imported from certificates generated by the laboratory. Further details on validation can be found in Section 12.

11.3.2 2017-2023 Sample Security

Samples were individually bagged in polypropylene bags and closed with zip ties. Multiple bagged samples were placed in polypropylene rice bags that were sealed with security tags and duct tape. Shipments consist of multiple rice bags marked with different coloured flagging to distinguish shipments being transported at the same time.

Shipments were either flown directly to Whitehorse from Tom Camp by charter aircraft using Tintina Air (Figure 11-1) or transported by road. Road transport was by Tu-lidlini Petroleum truck to Ross River where they were stored in a secure compound before being driven by Small's Expediting to the Bureau Veritas preparation laboratory in Whitehorse, or by Mercer truck from Tom Camp directly to the Bureau Veritas preparation laboratory. Flown shipments were collected by Bureau Veritas personnel from Tintina Air in Whitehorse.

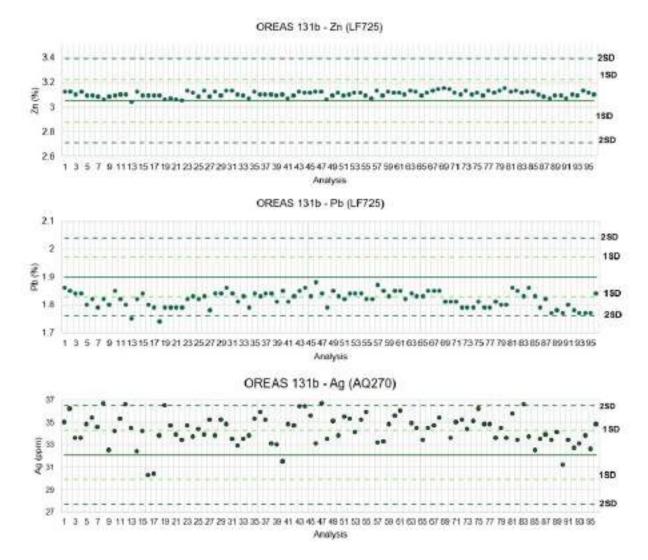
A chain of custody form accompanied each shipment to document handover points and personnel. To date, all shipments have been received intact by Bureau Veritas.

Figure 11-1: Sample Security

Source Fireweed 2024

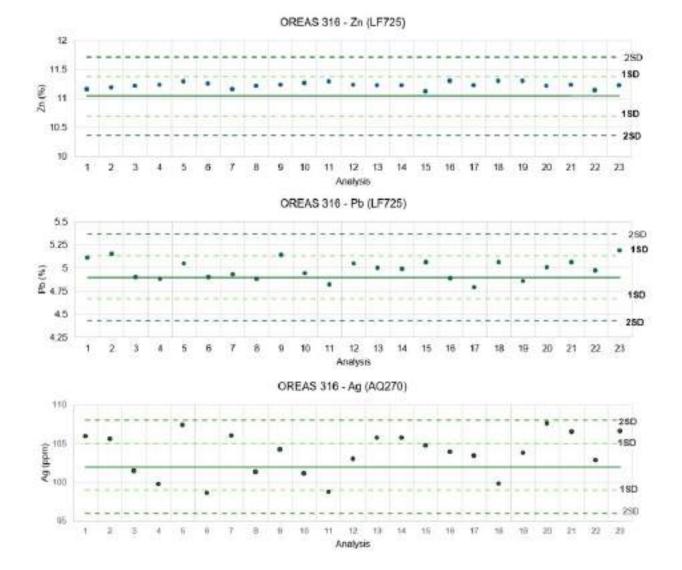
11.3.3 2017-2023 Quality Assurance and Quality Control

A total of 5% assay standards or blanks and 5% core duplicates are routinely included in the sample stream as a quality control measure and are reviewed after analyses are received. The SLR QP has reviewed the 2017-2023 assay results for the standards and blanks and is of the opinion that they are acceptable. Duplicate data add to the long term estimates of precision for assay data on the Project and precision for drill results reported is deemed to be within acceptable levels.


The quality control data for certified reference materials (CRM) submitted to Bureau Veritas from the 2017-2023 drill programs are consistent between drill seasons, which used similar QAQC protocols and analytical methods. Further details on the 2017 QAQC program can also be found in Arne and McGarry (2018). Example CRM plots are shown for OREAS-131b, assessed as a lab internal CRM in 2011 and by Fireweed 2017-2023 (Figure 11-1), and OREAS-316, used in 2022-2023 (Figure 11-2).

Other CRMs in use included HBMS A5 and HBMS B5 (2018 only), OREAS-132a, OREAS-133a, OREAS-134b; and starting in 2022, OREAS-135, OREAS 135a, OREAS-137; and from 2023, OREAS-315, OREAS-316 and OREAS-317. These CRMs are all commercially available CRMs made from material from Zn-Pb-Ag deposits in the Mount Isa district. A summary of 2017-2023 CRM performance is provided in Table 11-3.

The accuracy of the zinc data is good in the opinion of the SLR QP, generally with slightly positive relative biases less than 2% across a range of grades. Negative and positive biases for lead and silver, respectively, using OREAS-131b and OREAS-132a are evident in data from these CRMs (see 2011 QAQC section above for further discussion), however, they are less pronounced in data from OREAS-135 and OREAS-135a. There are no consistent biases evident in a newer range of base metal CRMs, OREAS-315, 316, and 317, and those relative biases that are present are generally less than 2%. This suggests that biases vary with the individual CRM and may reflect variations in certification of the different CRM. Future programs will limit CRMs to the newer OREAS-300 range, and preparation of a custom Macpass CRM is being considered. In the SLR QP's opinion, the overall accuracy of the data is acceptable.

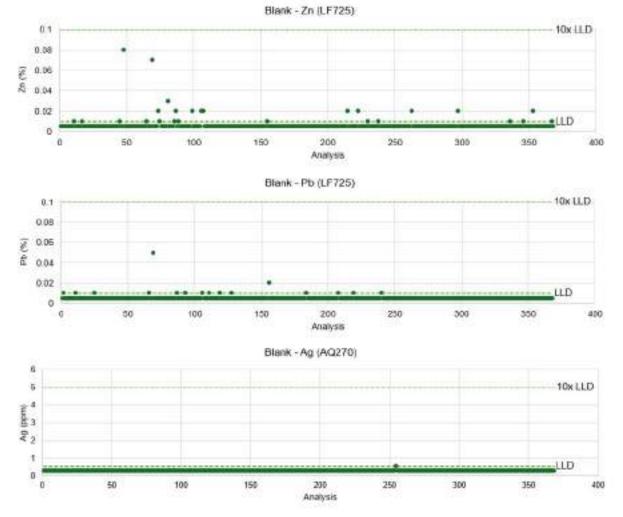

For Ga and Ge analysis, carried out on 2017-2023 pulps in 2023 using a hydrofluoric-aqua regia hot closed vessel digestion at Bureau Veritas (GC204), two CRMs were included with the samples, OREAS-315 and ORES-465. While the CRMs are not certified for GC204, both underreport the amount of Ga and Ge present. The certified level of Ga and Ge in OREAS 315 is close to the lower limit of detection (LLD), whereas the data for ORES 465 were higher but erratic, suggesting a problem with analysis of this CRM. The use of OREAS 465 at the Project has been discontinued, and use of OREAS 315 continues until a better matched CRM is available.

Note: OREAS 131b performance in order of sampling for 2018-2023 programs. OREAS 131b was in use in 2017, however, method LF725 was not used to analyze Zn and Pb. As a result, data points from that year are not shown. There were no failures of CRM in the 2017 program.

Year	Total CRM	CRM in use	Zn bias	Pb bias	Ag bias	
2017	33	OREAS 131 b OREAS 132 a OREAS 133 a	slight -ve	-ve	+ve	
2018	25	OREAS 131 b OREAS 132 a OREAS 133 a OREAS 134 a HBMS A5 HBMS B5	range (-2.5 to 5.1%)	range (-2.8 to 0.4%)	+ve (1.8 - 7.8%)	
2019	46	OREAS 131 b OREAS 132 a OREAS 133 a OREAS 134 a	<2% +ve	-ve (-5.1 to -0.5%)	+ve (1.3 to 6.1%)	
2020	70	OREAS 131 b OREAS 132 a OREAS 133 a CDN-HZ-3	<2% +ve	-ve (-3.9 to 0%)	+ve (2.0 to 7.2%	
2021	58	OREAS 131 b OREAS 135 OREAS 137	<2% +ve	range (-3.1 to 2.9%)	+ve (0.5 to 9.3%)	
2022	77	OREAS 131 b OREAS 135 OREAS 137	<2% +ve	range (-4.4 to 2.9%)	+ve (0.6 to 8.3%)	
2023	247	OREAS 131 b OREAS 132 a OREAS 135 OREAS 135 b OREAS 315 (new) OREAS 316 (new) OREAS 317 (new)	<2% +ve	<2% -ve new -ve in old (-1.8 to -6%)	<2% +ve new +ve in old (-0.1 to 3.3%)	

Table 11-3:	Summary of CRM Performance for 2017-2023 Assay Sampling
-------------	---

Blank samples are routinely inserted into the sample stream to identify potential contamination. Blank material has included quartz and granitoid landscape rock and coarse silica blank samples. These materials pass through sample preparation equipment and indicate cross contamination during crushing and grinding. To minimize cross contamination between samples, clean silica wash material is passed through the jaw crusher and pulverizer between samples. There has been no significant contamination in samples.


Results of blank analysis for Zn, Pb, and Ag are shown in Figure 11-4 and summarized in Table 11-4. A large number of blanks in the 2017 program showed signs of carryover from high-grade Zn and Pb samples, but not Ag, with values well over ten times the LLD, used as a threshold for indication of cross contamination. In assessment of QAQC data for the 2018 MRE, CSA Global concluded that carryover from high-grade samples was likely a small percentage of the base metals contained in the sample preceding each 2017 coarse blank and did not

consider the carryover to be significant (i.e. carryover less than 1%). A number of 2017 samples were resampled in 2018 using LF725 and additional blanks and CRMs, as well as addition of a silica wash between samples during preparation; results showed excellent repeatability between 2017 and 2018 resampling, further supporting the assessment that carryover in 2017 was not significant.

Blanks from 2018-2023 performed much better, with only 3% of blank samples returning Zn, Pb, and Ag values above LLD; none of these exceeded ten times LLD, and typically were less than three times LLD, indicating no identifiable contamination.

In 2023, 48 pulverized granite blanks were also submitted (CDN Resources BL-9). While these also showed no evidence of contamination, pulverized blanks only test for laboratory contamination during digestion and analysis, not during collection or preparation. The use of these has been discontinued for subsequent drill programs at Macpass.

Figure 11-4: Blank Sample Results, Zinc, Lead, Silver, 2018-2023

Note: Blank performance in order of sampling for 2018-2023 programs. Method LF725 was not used to analyze Zn and Pb in 2017 so data points from that year are not shown. There were no failures of blanks in the 2017 program. LF725 lower limit of detection is 0.01% for Zn and Pb; AQ270 lower liming of detection for Ag is 0.5 ppm. Below LLD reported values are stored as half detection limit in the Fireweed drill database

Field duplicate quarter core samples have been used to assess analytical precision, with average RSDs calculated following the RMS method of Stanley and Lawie (2007). Duplicate data were filtered to remove values within an order of magnitude of the LLD as those low value data are inherently imprecise. A summary of data is provided in Table 11-4 for Zn, Pb, and Ag. Field duplicate RSD values lie within acceptable range. Laboratory preparation coarse crush and pulp duplicates were also assessed and found to have much lower RSD values (typically less than 5%). Data precisions estimated from field duplicate quarter core, coarse crush, and pulp duplicates are acceptable when compared with published data for stratiform base metal deposits (Abzalov, 2008).

	Total Duplicate Pairs	Zn Pair Count	Zn % RSD	Pb Pair Count	Pb % RSD	Ag Pair Count	Ag % RSD		
2017	113	55	12.7	55	11.9	55	11.6		
2018	14	9	21.0	7	10.8	7	17.0		
2019	72	54	19.8	29	12.4	25	12.1		
2020	101	41	27.4	15	17.7	57	10.9		
2021	87	55	15.3	37	15.0	54	8.9		
2022	61	36	24.3	14	11.1	26	9.0		
2023	247	107	24.8	41	24.7	60	16.6		
Total/ Weighted average	695	357	20.9	198	15.5	284	11.9		
Note: Pair count for each element varies due to filtering to at least one order of magnitude above LLD, which is different depending on element and analytical method. Below this threshold data are inherently imprecise. The relatively small number of duplicates in 2018 is the result of limited sampling that year.									

Table 11-4:	Summary of Precision Estimates Based on Quarter Core Duplicates
-------------	---

11.3.3.1 2017-2023 Check Assays

Pulps from 804 samples representing 3.3% of assay samples generated during Fireweed 2017-2023 drilling were selected as check assays. The majority were sent to ALS Geochemistry, Vancouver (ALS Geochemistry) in North Vancouver for independent verification of results. A small number of samples analyzed originally by AGAT in 2023 were re-analyzed by Bureau Veritas as a check on 2023 AGAT assay data. Samples were selected across a wide range of base metal grades from Tom, Jason, End Zone, and Boundary Zone deposits.

Analyses were completed at ALS Geochemistry using the same sample digestions and instrumental finishes as used at Bureau Veritas. Silver was determined by ME-ICP41a with overlimit ME-OG46; zinc and lead by ME-ICP41a with overlimit ME-XRFb and ME-XRFc; barium was determined by XRFb with overlimit ME-XRFc but limited to a subset of 65 samples with fully quantitative results. There is excellent agreement in data from the two laboratories for lead and zinc, aside from three samples that reached the upper limit of detection for lead at ALS Geochemistry (Figure 11-5). Silver has an average relative bias of -3.3% at ALS Geochemistry, whereas initial barium analyses at ALS Geochemistry had a slight positive bias in the higher grade samples.

A total of 172 samples analyzed by GC204 at Bureau Veritas were also analyzed by ME-MS89L at ALS Geochemistry. The latter is a total fusion digestion compared to a 4-acid digestion used for GC204. The gallium results are in good agreement from the two methods, however, germanium under reports using GC204 compared to ME-MS89L, suggesting the presence of some germanium in a mineral phase not digested in a 4-acid digestion.

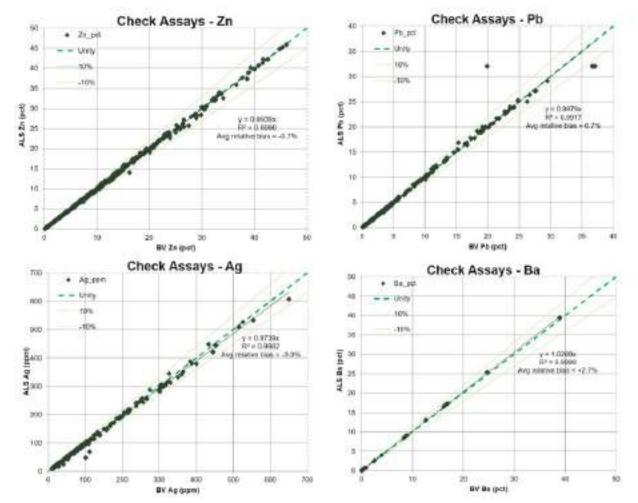
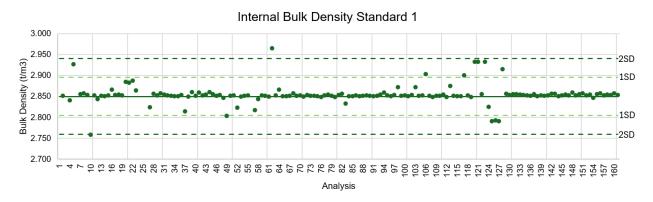
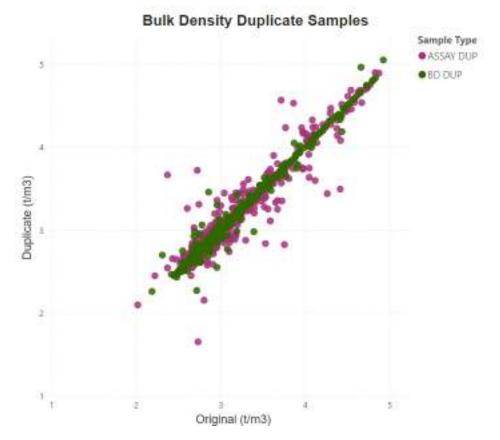


Figure 11-5: Check Assay Plots for 2017-2023 Samples – Zinc, Lead, Silver, Barium


11.3.4 2017-2023 Bulk Density Quality Assurance and Quality Control

Fireweed measures bulk density of each cut sample prior to shipping offsite for assay. Sample duplicate bulk density determinations and in-house bulk density standard determinations are made at a rate of 5%, approximately every 20 samples.


Since 2017, four in-house bulk density standards (mineralized drill core from the Tom deposit that span a range of densities) have been used and show an acceptable long term precision (Figure 11-6). Certified standard masses are used to calibrate the scale balance at the start of every season. Analyses of the standards have typically been close to the expected value, within one or two standard deviations.

Bulk densities of field duplicate quarter core samples are also measured and indicate the relative precision of the analyses. Variability is consistent with that observed in assay data for each field duplicate pair. Repeat bulk density measurements were also taken to evaluate uncertainties associated with bulk density measurement in the field. The amount of scatter between bulk density repeat measurements is significantly less than between field duplicate quarter core samples, indicating good reproducibility using the bulk density measurement equipment and procedure used on site (Figure 11-7).

Figure 11-6: Example Bulk Density SRM Performance

11.4 Quality Assurance and Quality Control

The SLR QP is of the opinion that the sample preparation, analysis, and security procedures at the Macpass Project are sufficient for estimating Mineral Resources. Additionally, the SLR QP is of the opinion that the QAQC program designed and implemented by Fireweed is adequate, and the assay results in the database are suitable for use in the MRE.

12.0 Data Verification

12.1 Fireweed Data Verification

Fireweed carried out database validation for all drill data up to and including 2023 drill holes prior to handover to SLR for Mineral Resource estimation.

12.1.1 Collars

To confirm collar locations, historical drill holes were surveyed using differential GPS where collars could be confidently located in the field; 40 of 300 collars were not located, and locations were estimated within ground disturbances related to drill pads. The collars of Tom underground drill holes were not accessible and coordinates were taken from historical survey records and drill logs. Historical survey records and drill logs were compared against database values to ensure database accuracy.

12.1.2 Surveys

Downhole surveys were validated by re-digitizing records in historical logs and drill records to ensure there were no discrepancies or transcription errors in the current Fireweed database. Several Tom and Jason holes were resurveyed using gyro surveying equipment and were found to be within very good agreement with historical survey data. Attempts were made to carry out downhole resurveys in 2020 at Boundary Zone, however, none of the historical holes could be re-entered past casing depth so no reliable data were collected.

12.1.3 Geological and Geotechnical Data

Geological data were reviewed for completeness (missing or incomplete interval or point data), geological and geotechnical viability (e.g., recovery and rock quality designation (RQD) within plausible range of values), and errors using built-in validation reporting within MX Deposit and within Leapfrog (e.g., overlapping intervals, intervals that cross lithological boundaries, intervals that exceed hole depth, and null fields that require data). Recovery data were recorded for the majority of historical drill holes, and following transcription were used without further validation. Any errors identified were then reviewed and corrected in the MX Deposit database.

12.1.4 Bulk Density

Historical bulk density and recovery were transcribed from drill logs where available. Bulk density was not routinely recorded for all historical drill holes.

During a relogging program in 2018-2019, Fireweed measured bulk density on historical drill core from Tom, Jason, and Boundary Zone holes and it was confirmed that original recorded values can be relied upon. For approximately 20% of samples, bulk density measurements were not available for drill core, or only small (10 cm to 20 cm) spot samples have been measured. Regressions were developed by SLR for the Tom and Jason deposits using measured bulk density values against assay values to approximate bulk density for the samples with no measured bulk density values. Fireweed developed a regression formula to estimate bulk density for unmeasured samples at Boundary Zone. The SLR QP reviewed the regression methodology and determined that the regressed values were appropriate for use in supporting the Mineral Resource estimate. Bulk density regression is described in detail in Section 14. Field-measured (MEAS) or regressed (REG) bulk density values are indicated in the database, or LAB-SPG04 where measured on RC pulp samples using a gas pycnometer at Bureau

Veritas' laboratory. A subset of samples were also measured at Bureau Veritas using gas pycnometer method on pulps (code SPG04); field-measured and lab-measured bulk densities showed very good agreement, indicating the current field method is appropriate.

To validate bulk density, measured and calculated readings were compared. Fireweed uses OHaus Ranger Count 7000 scales that report a bulk density reading in addition to measured dry and wet sample masses. Any reading that was outside of 10% of the calculated reading was investigated and flagged as invalid. Bulk density readings reported less than 2 t/m³ or greater than 7 t/m³ were also investigated, commented on, flagged as invalid, and then recalculated using regression.

12.1.5 Assays

To validate database assay data, all historical drill holes at Tom (211 holes), Jason (119 holes) and Boundary Zone (26 holes) were re-digitized by manual transcription from scanned PDF drill logs and assay reports/certificates into MSExcel. A structured query language (SQL) script was run against the database to identify samples that were missing, had inconsistent from and to intervals, had missing analytes (e.g., Zn, Pb, Ag, etc.) or non-matching results between the current database and the digitized values. Less than 2% of the dataset had inconsistent values (mainly typos, rounding errors; corrected), less than 1% of samples were missing from the database (added), less than 1% were missing Zn values (added where available), less than 0.5% were missing Pb values (added where available), and less than 6% were missing Ag values (added where available). Fireweed has recorded any historical trace "tr" amounts as half detection limit in the drill database.

Assays acquired by Fireweed drilling since 2017 were not checked because results are directly imported from certificates generated by the lab.

12.2 Re-sampling

A Tom-Jason resampling program was conducted by Fireweed in 2017 to confirm historical assay data. Fireweed re-sampled and assayed historical drill core due to a lack of assay certificates and historical quality control data for some drill holes. Intervals were selected to include various historical drill campaigns by different operators and to assess core from both the Tom and Jason deposits. A total of 111 core samples were collected from Tom and 108 collected from Jason. No appreciable bias was found in historical Zn and Ag data, however, historical Pb assays appear to be underreported by an average of 6% (Arne and McGarry 2018).

A Boundary Zone resampling program was carried out by Fireweed in 2022-2023. A selection of core drilled by Cominco at Boundary Zone between 1982 and 1991 was resampled to validate historical assays. A total of 174 core samples representing 10% of historical samples were collected from four holes, drilled in 1983, 1984, 1989, and 1990. The resampling program verified historical assay values and detected no significant bias, with some scatter attributed to the poor condition of core boxes and markings that resulted in slight mismatches between original and re-assayed depth intervals. While there are few records available for the Cominco drilling, core-handling, QA/QC procedures, or analytical methodologies, it is the opinion of the SLR QP that the resampling program provided sufficient confidence to validate the historical assay data as adequate.

12.3 SLR Data Verification

An independent data verification process was undertaken by SLR to ensure the accuracy, reliability, and completeness of the geological, survey, density, and assay data supporting the Mineral Resource estimation. This section outlines the steps taken by SLR to validate the key datasets used in the resource model.

12.3.1 Site Visit

Pierre Landry, P.Geo., of SLR, conducted a site visit to Macpass and related facilities from September 15-17, 2022. During this visit, Mr. Landry inspected the core shack, core scanning workspace, and reviewed the logging environment and procedures for data collection and sampling. He also examined core samples from the Tom, Jason, End Zone, and Boundary Zone deposits, interviewed Fireweed personnel, and gathered other information necessary for completing the MRE and accompanying Technical Report. Additionally, Mr. Landry inspected drill collars and drill hole cores relevant to the Mineral Resource estimation, including checking collar locations with a handheld GPS and visually comparing mineralization with interpreted drilling sections. Fireweed provided full access to all facilities and personnel during the site visit. During the visit Mr. Landry was accompanied by Dr. Jack Milton, Vice-President, Geology for Fireweed.

12.3.2 Collars

SLR reviewed the collar locations in relation to the digital topographic surface or the underground excavation digital model, as applicable. During this process, SLR identified a small number of collars for further investigation and requested that Fireweed conduct additional verification. Fireweed responded by performing supplemental collar surveys using a real-time kinematic (RTK) GPS and providing photographic documentation of the hole locations, casing positions, and measurement methodology. Following this comprehensive review, the SLR QP found no issues with the collar locations.

During Mr. Landry's site visit, seven drill holes at the Tom deposit were spot checked using a handheld GPS and compared to the collar locations in the drill hole database. All checked holes were found to be within a reasonable tolerance, considering the precision of the handheld GPS relative to the RTK GPS used for the database collar measurements. Additionally, Mr. Landry visited active drilling sites for holes TS22-005 and TS22-004, where he observed the drilling procedures. All observed procedures were consistent with industry standard practices.

Figure 12-1 provides an image of a field check for the collar location of hole TS17-003. The database coordinates for this hole are Easting: 442,021.79, Northing: 7,003,825.11, and Elevation: 1,535.656. These compare well with the handheld GPS readings, which recorded coordinates of Easting: 442,021, Northing: 7,003,824, and Elevation: 1,538.

Figure 12-1: Collar Location Field Check (TS17-003)

Source: SLR 2022.

12.3.3 Survey

SLR reviewed the drill hole traces to identify any unusual dip and azimuth orientations. During this review, SLR observed an unexpected interaction between wedge hole NB23-029D1 and its parent hole NB23-029. Fireweed conducted an investigation into the survey measurements for the wedge holes at Boundary and identified discrepancies between the multiple methods used by their drilling contractors for downhole surveys. After determining the source of the issue, Fireweed corrected the erroneous measurements and provided SLR with an updated database.

12.3.4 Geological Data

The SLR QP has reviewed Fireweed's acquisition of geological data and found the practices to be of high quality, consistent with industry standards. During the site visit, the SLR QP observed both the core scanning performed by GeologicAI and the traditional core logging carried out by Fireweed personnel.

The raw data generated from core scanning, including core photographs, XRF, VNIR, and SWIR spectra, as well as the interpretations produced by GeologicAI regarding lithologies, alterations, and mineral compositions, are maintained separately from the traditional core logging completed by Fireweed staff.

Fireweed's traditional logging of structure, lithology, alteration, mineralization, and weathering was also observed to be in accordance with standard industry practices. Sampling procedures, including the selection of sampling intervals, consistently respected geological contacts.

Final interpretations of mineralization domains and sub-domains integrate data from both the core scanning and traditional logging approaches. The SLR QP is of the opinion that Fireweed has effectively utilized these datasets, applying machine learning techniques to support and enhance mineralization interpretation. In cases where discrepancies arise between machine

learning categorizations and traditional logging interpretations, high-resolution core photographs are reviewed prior to making a decision on which data source to prioritize.

The SLR QP is of the opinion that the geological data acquired by Fireweed, along with the methods used for its acquisition, are reliable and confidently define mineralization domains and support Mineral Resource estimation in areas where sufficient data coverage is available.

An independent check sample was not collected during the site visit due to the visually distinctive nature of the mineralization styles and Fireweed's actively monitored QA/QC program, which includes regular use of duplicates, blanks, and CRMs. Additionally, recent third-party check sampling has provided sufficient verification of the assay data for the elements of economic interest.

12.3.5 Bulk Density

During the site visit, the SLR QP observed the density measurement procedures employed by Fireweed. As detailed in Section 11, Fireweed utilizes the Archimedean method (water displacement) for measuring density. These measurements are conducted after the drill core has been split. Upon delivery to the core shack, which is the location for density testing, the samples are placed in a staging area to dry.

Fireweed staff measure bulk density on the entire length of each assay sample. The weights of the samples, both in air and in water, are recorded on a tablet. A sensor is placed in the water to monitor the temperature, facilitating a small correction factor for water density. The SLR QP observed the use of standards, the calibration of the scale, and the frequency with which the water was replaced.

The SLR QP noted that Fireweed does not employ wax or heat-sealed cellophane in their density testing process, a technique commonly applied to deposits where void spaces in core samples may be an issue. During the core review, the SLR QP did not identify any porous units within the mineralized zones and considers the risk of overstated density measurements to be minimal. Furthermore, Fireweed's own comparison between field-measured and laboratory-measured bulk densities demonstrated strong agreement, supporting the validity of current field methodology.

The SLR QP observed that in cases where a backlog of split core occurs, the drying times could be shorter than optimal, potentially resulting in overstated dry weights. This could lead to slightly lower density measurements compared to ideal conditions. The SLR QP recommends that where possible, efforts should be made to ensure sufficient sample drying time prior to conducting density measurements to maintain the accuracy of the results.

12.3.6 Assays

The data verification process completed by SLR was supervised and reviewed by the SLR QP. SLR reviewed the assay database for the Macpass Project, specifically the file 'Logging_Best_NoQAQC.csv' dated February 27, 2024, which contains 32,982 assay samples from 439 drill holes. The database includes a combination of both historical and recent assay data from the 2017–2023 drill programs. For the historical campaigns, which encompass sampled 263 drill holes and 8,179 samples, scanned paper certificates were provided by Fireweed. Meanwhile, for the 2017–2023 drill programs, covering 181 drill holes and 24,765 samples, digital certificates were provided by Fireweed.

SLR validated the elements Zn, Pb, Ag, Ba, As, Bi, Sb, Ga, and Ge for the 2017–2023 assay campaigns by cross-referencing the database with the digital assay certificates. For the historical assay campaigns, SLR validated the elements Zn, Pb, and Ag against the scanned paper assay certificates.

SLR compared 22,664 of the 24,739 samples from 164 drill holes to the digital laboratory certificates, covering 92% of the assay database for the 2017–2023 campaigns. The remaining 8% of samples were not compared due to the digital certificate formats requiring more timeintensive manipulation. This process involved data from 378 digital assay certificates from laboratories including ACME, AGAT, ALS, and Bureau Veritas. SLR adhered to the analytical hierarchy protocols, including the re-analysis sequence, established by Fireweed. In total, SLR detected a small number of discrepancies which represent 0.05% of the cross-checked assays.

SLR conducted systematic spot checks on 858 of the 8,243 samples from historical drilling campaigns, covering 10.4% of the historical samples from 38 drill holes. These samples were compared to their corresponding scanned assay and logging certificates, with only Zn, Pb, and Ag being validated. In this process, SLR identified a small number of discrepancies representing 2.6% of the records compared.

The SLR QP reviewed the findings with Fireweed personnel and Fireweed made the necessary corrections and conducted additional internal verification prior to re-issuing an updated database to SLR to support Mineral Resource estimation.

Based on the results of SLR's assay validation, the SLR QP is of the opinion that the assay data is reliable and sufficient to support the MREs presented in this Technical Report. No material discrepancies were identified that would affect the accuracy of the resource model. The SLR QP concludes that the data verification procedures are consistent with accepted industry practices, and the data is appropriate for use in Mineral Resource estimation.

13.0 Mineral Processing and Metallurgical Testing

13.1 Introduction

Several metallurgical test work programs have been undertaken to quantify metallurgical performance for the Macpass Project. There are historical test programs dating from 1982, however, only test programs itemized in the list below are summarized in this report.

- 2018: Tom and Jason Deposits (Base Metallurgical Laboratories Ltd (Base Met) BL0236)
- 2022: Boundary Zone Deposit (Base Metallurgical Laboratories Ltd BL0755)
- 2023: Boundary Zone Deposit (Massive Sulphides) (Base Metallurgical Laboratories Ltd – BL1140)

The test work programs carried out to support the development of the Macpass Project have been summarized by Kelly McLeod, P.Eng., K-Met Consultants Inc. (K-Met). Programs BL-0236 and BL-1140 were managed and supervised by Kelly McLeod. A 2024 metallurgical test program has been initiated for Tom, Jason, and Boundary Zone. All results are pending.

Based on the assimilation of results from all modern metallurgical programs identified above, the proposed process flowsheet has been designed to include primary crushing followed by a semi-autogenous grinding (SAG) mill / ball mill grinding circuit. The material will be ground to a target P₈₀ of 50 μ m and fed to sequential Pb and Zn flotation. The Pb and Zn regrind circuits will be designed to produce P₈₀ grind sizes of 15 μ m and 25 μ m, respectively. Test results indicated that no significant benefit was observed for regrind sizes below these values.

The Boundary Zone material will require a few modifications to the flowsheet described above due to the hardness of the mineralized material. The primary grind for the Boundary Zone material was set at P_{80} 75 µm, which is coarser than Tom and Jason.

Preliminary estimates of Pb and Zn recoveries and concentrate grades are summarized in Table 13-1. The results presented for Tom and Jason are from locked cycle testing on the Tom and Jason (T&J) Composite (Test 45 - weighted average of cycles D and E). The Boundary Zone results presented are an average of all the open circuit cleaner tests. Some areas in Boundary Zone may not support the inclusion of a separate lead circuit, which may necessitate the need to campaign treat the Boundary Zone feed in a Zn only flotation configuration.

Product		Grade		Metal Recoveries			
-	Zinc (%)	Lead (%)	Silver (g/t)	Lead (%)	Zinc (%)	Silver (%)	
		Tom an	d Jason				
Feed Grade	7.3	3.2	44.0	-	-	-	
Lead Concentrate	8.9	61.5	688.0	75.4	4.8	59.4	
Zinc Concentrate	58.4	2.2	88.0	7.5	88.9	22.0	
		Bounda	ry Zone				
Feed Grade (Ave)	4.9	0.54	13.9	-	-	-	
Lead Concentrate	1.3	41.8	422	51.6	1.0	21.0	
Zinc Concentrate	54.8	0.7	54.7	18.8	81.0	30.8	
	Bour	dary Zone N	assive Sulph	nides			
Feed Grade (Ave)	0.6	6.9	38.0	-	-	-	
Lead Concentrate (NB21-001-MS-01, T11)	4.1	41.6	512	30.4	0.2	7.1	
Zinc Concentrate	51.0	1.6	1.09	26.8	83.7	30.3	
Source: Base Met (2018, 2022, 2	023)	•		•		•	

Table 13-1: Preliminary Recovery Projections for Macpass

This section discusses all modern metallurgical testing and mineral processing aspects of the Project. In the sections below, when nomenclature T0X is used, it is referring to Test number X from the individual programs.

13.2 2018 Test Program (Tom and Jason)

In May 2018, a metallurgical test program was completed at Base Metallurgical Laboratories Ltd. (Base Met) in Kamloops, British Columbia in support of the NI 43-101 Technical Report, Macmillan Pass Project, Yukon Territory, Canada, with an effective date of May 23, 2018, for Fireweed Zinc Ltd. The work evaluated both the Tom and Jason deposits using quarter core samples from the 2017 drill program. Test work included mineralogy, comminution, dense media separation (DMS), settling, and rougher/cleaner Pb and Zn sequential flotation. Five composite samples, representing the Tom and Jason zones, were tested to develop a preliminary recovery flowsheet for producing saleable Pb and Zn concentrates. Once the flowsheet was developed, global composites were created and LCT was carried out to project recoveries for the economic analysis in the Preliminary Economic Assessment (PEA).

Saleable Pb and Zn concentrates were produced using Pb and Zn sequential flotation with a primary P_{80} grind size of 50 µm.

The T&J Composite was created with a blend using a ratio of 65% Tom Composite and 35% Jason Composite to reflect the anticipated 2018 mine plan. The LCT results for the Pb and Zn concentrates are summarized in Table 13-2 and Table 13-3.

Composite	Head Grade	LCT	Pb Con Grade (%, g/t)					Pb Con Recovery (%)			
	% Pb	#	Pb	Zn	Ag	Hg	SiO ₂	Pb	Zn	Ag	
Tom	4.1	43	69	8.1	816	43	1.3	74	5.1	59	
Jason	1.6	44	70	4.2	30	9	2.3	56	0.7	15	
Tom & Jason	3.2	45	61	8.9	688	40	2.4	75	4.8	59	
Tom & Jason	3.4	49	69	8.7	667	-	-	77	4.6	64	

Table 13-2: LCT Summary Lead Concentrate Tests

Composite	Head Grade	LCT	Zn Con Grade (%, g/t)					Zn Con Recovery (%)		
	% Zn	Test	Pb	Zn	Ag	Hg	SiO ₂	Pb	Zn	Ag
Tom	7.0	43	2.5	60	88	183	1.9	6.0	86	14
Jason	7.4	44	1.1	63	3	89	2.1	7.3	88	13
Tom & Jason	7.3	45	2.2	58	88	155	4.0	7.5	89	22
Tom & Jason	7.1	49	1.2	61	6	-	-	3.5	84	14.9
Notes: Pb and Zn results are weighted average from cycles D & E. Ag and Hg are from Cycle E.										

13.2.1 Sample Selection

Five composites representing Tom West, Tom East, and Jason Main were generated covering sections of the zones and containing representative samples based on mineralogy, grade, and location in the deposit. Hanging wall and footwall dilution was included with each composite to represent actual mined material. A high-grade sub-sample of Tom East that contained mercury, designated Composite 3B, was also created and blended with Composite 3A.

13.2.2 Head Assays

Head assays for the five composites are summarized in Table 13-4. Total organic carbon (TOC) assays were performed, and results indicated a significant portion of the carbon in the sample was present as organic carbon, measuring between 0.3% and 0.9%. Organic carbon is naturally hydrophobic and can contaminate concentrates if it is not adequately controlled. High ratios of organic carbon to Pb in the feed may indicate samples or zones which require control of organic carbon.

Composite ID	Drill Hole ID	Pb (%)	Zn (%)	Fe (%)	Ag (g/t)	S (%)	C (%)	ТОС (%)
Composite 1 TOM WEST	TS17-001	1.21	4.71	1.07	0.6	8.27	1.22	0.56
Composite 2 TOM WEST	TS17-002 TS17-003	5.39	8.50	2.2	91	11.8	0.63	0.43
Composite 3A TOM EAST	TS17-007	7.60	7.90	3.8	118	9.94	1.38	0.87
Composite 3B TOM EAST	TS17-007	21.0	24.6	2.05	327	16.9	1.31	0.39
Composite 4 JASON MAIN	JS17-001 JS17-002	1.47	6.50	6.15	2.4	10.4	1.07	0.75
Composite 5 JASON MAIN	JS17-004 JS17-006	2.03	8.70	12.85	1.4	23.45	0.42	0.30
Source: Base Met (20	18)	1			1			

Table 13-4:	Composite Sample Head Assays
-------------	------------------------------

13.2.3 Mineralogy

Feed samples from each composite were submitted for bulk mineral analysis (BMA) using QEMSCAN to determine mineral composition. The Pb mineralization consists mainly of galena, while sphalerite is the main Zn mineral of interest.

Mineral liberation analysis was also carried out on each composite. At a P_{80} grind size of 66 μ to 76 μ m, sphalerite has a higher degree of liberation than galena, however, both have adequate liberation from gangue material. Composite 2 shows a high degree of galena – sphalerite interlocking which can sometimes make it more difficult to achieve a clean separation of lead and zinc for this type of mineralized material.

Using the mineral liberation data collected, release curves for the five composites were generated to evaluate galena and sphalerite liberation as grind size decreased. The results are presented in Figure 13-1 and Figure 13-2, respectively. The curves show that adequate liberation is achievable at a P_{80} primary grind size of 50 µm except for the finer grained material in Composite 1. Mineralogy indicated a finer regrinding would be required at the cleaning stage to achieve the desired final concentrate grades and recoveries.

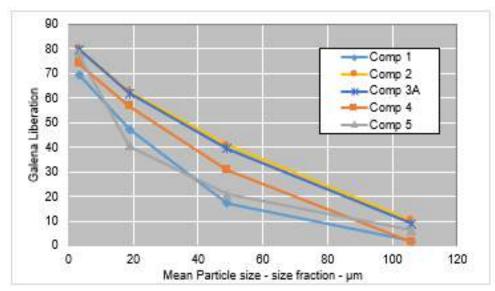
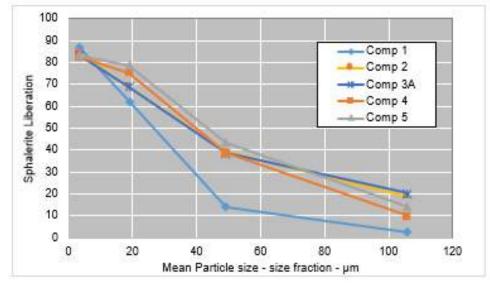



Figure 13-1: Release Curve for Galena Liberation

Source: Base Met (2018)

Source: Base Met (2018)

13.2.4 Comminution

Comminution test work was carried out to determine the grinding energy required to liberate Pb and Zn minerals prior to flotation. Bond ball mill work index (BWi) tests at a sieve size of 106 µm were completed on all five composites. The results are summarized in Table 13-5. The Tom East composite (Composite 3A) was found to be the hardest sample, with a BWi of 14 kWh/t. Overall, the Tom and Jason material can be ranked as moderately soft to moderately hard compared with a data set of other mineralized materials.

Composite ID	Sieve Size (µm)	Grams per Revolution (g)	F ₈₀ (μm)	Ρ ₈₀ (μm)	Bond Ball Mill Work Index (kWh/t)
Composite 1TOM WEST	106	1.69	2,274	73	11.3
Composite 2 TOM WEST	106	2.27	2,618	73	8.8
Composite 3A TOM EAST	106	1.36	2,367	77	14.0
Composite 4 JASON MAIN	106	1.45	2,366	76	13.1
Composite 5 JASON MAIN	106	1.85	1,916	74	10.9
Source: Base Met (2018)	-	•			

Due to sample size suitability, SAG mill comminution (SMC) testing was only completed on Composite 1 and Composite 3A. The results are shown in Table 13-6 and indicate that the samples are soft to moderately hard.

 Table 13-6:
 SMC Data for Composites 1 and 3A

Composite ID	Dwi (kWh/m³)	Mia (kWh/t)	Mih (kWh/t)	Mic (kWh/t)	Axb	ta
Composite 1 TOM WEST	4.2	10.7	7.2	3.7	80.8	0.61
Composite 3A TOM EAST	5.7	14.5	10.4	5.4	55.8	0.46
Source: Base Met (2018)	÷					

Bond abrasion tests were conducted on composites 1 and 3A to determine potential wear rates for the crushing and grinding equipment. The results are summarized in Table 13-7. At an average Bond abrasion index of 0.335, the samples are considered moderately abrasive. A weighted average of 0.27 was used for predicting wear rates and estimating annual operating costs in previous study work.

Table 13-7: Bond Abrasion Results for Composites 1 and 3A

Composite ID	Bond Abrasion Index (g)
Composite 1 TOM WEST	0.225
Composite 3A TOM EAST	0.445
Source: Base Met (2018)	

13.2.5 Dense Media Separation

DMS is a technique for pre-concentration of minerals that utilizes the density difference between the ore and gangue with the purpose of rejecting gangue from the feed material prior to grinding. DMS testing was carried out on composites 1 and 3A to evaluate the potential to pre-concentrate the sulphide minerals prior to flotation. Twenty kilogram samples were crushed and screened at three size fractions, 0.75 in., 0.5 in., and 0.25 in. The -0.25 in. fines were put aside as these fine particles are not effectively separated by DMS. The three coarse samples were subjected to heavy liquid separation at SGs of 2.85 and 3.00.

The DMS results are summarized in Table 13-8 and the mass rejection versus recovery curves are shown in Figure 13-3 and Figure 13-4. At a separation SG of 2.85, DMS would be able to reject 15% to 25% of the material while losing approximately 4% Pb and 3% Zn. The mass rejection was quite limited, likely a function of barite content in the samples, which would be concentrated to the sinks along with the sulphide minerals. Since the low mass rejection did not justify the corresponding metal losses, DMS was not considered in the flowsheet for the remainder of the test program.

Parameter	Units	Composite 1 Tom West	Composite 3A Tom East
	Feed Grade		
Pb Feed Grade	%	1.21	4.93
Zn Feed Grade	%	4.56	7.34
	Feed Size Distribut	tion	
+ 0.75 in.	kg	6.2	6.8
- 0.75 in., + 0.5 in.	kg	5.1	4.7
- 0.5 in., + 0.25 in.	kg	4.0	3.8
- 0.25 in.	kg	4.6	4.9
Pro	duct (2.85 Sinks +	Fines)	
Mass Pull	%	84.9	74.9
Pb Concentrate Grade	%	1.37	6.38
Zn Concentrate Grade	%	5.24	9.47
Pb Recovery	%	95.7	96.9
Zn Recovery	%	97.4	96.6
Source: Base Met (2018)	· · ·		

Table 13-8: DMS Results for Composites 1 and 3A

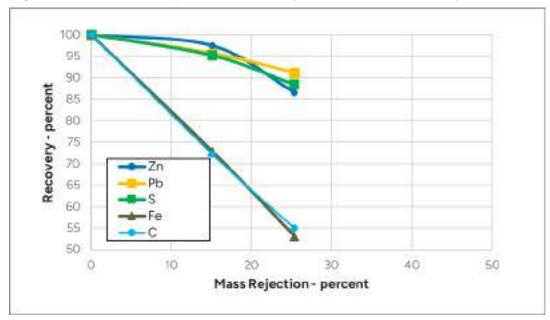


Figure 13-3: DMS Composite 1 Mass Rejection Versus Recovery Curves

Source: Base Met (2018)

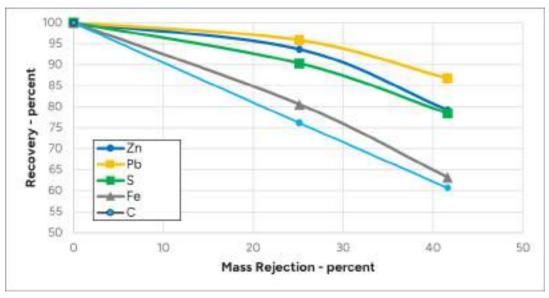


Figure 13-4: DMS Composite 3A Mass Rejection Versus Recovery Curves

Source: Base Met (2018)

13.2.6 Flotation

13.2.6.1 Flotation Variability Results

Sequential Pb and Zn flotation test work was carried out using the flowsheet presented in Figure 13-5. All five composites were subjected to both rougher and cleaner flotation testing to determine the appropriate conditions required to achieve saleable Pb and Zn concentrates. The key parameters investigated in rougher flotation were primary grind, Pb selectivity over Zn (Composite 2), and carbon depression with CarboxyMethyl Cellulose (CMC). The CMC used was marketed under the product name PE26.

After completing flowsheet development, composites were created for LCT. The results from the LCTs were used for the recovery projections summarized in Section 13.1.

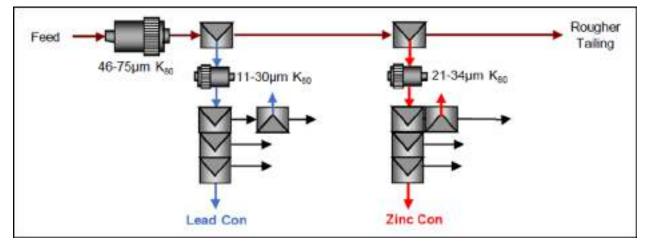


Figure 13-5: Flotation Test Work Flowsheet

A summary of the cleaner flotation results for each composite is presented in Table 13-9. The tests operated at a target P_{80} grind size of 50 µm were chosen as the optimal results due to the positive results observed in the Zn circuit. These overall batch cleaner flotation tests confirm that based on the material tested, high Pb and Zn final concentrate grades can be achieved.

The recoveries from these tests are not representative of the overall combined circuit performance for the selected flowsheet. To determine overall recovery estimates, LCTs were completed later in the test program.

Source: Base Met (2018)

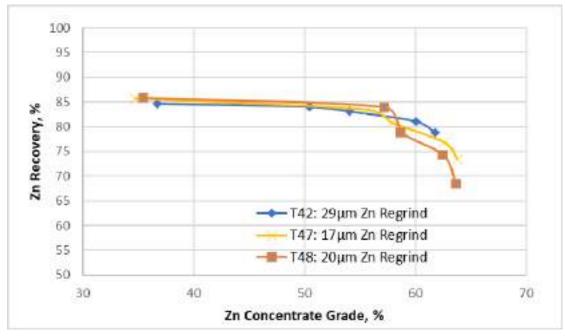
Composite ID	Test	Pb Flot	ation	Zn Flotation			
	Number Concentrate Grade (%)		Recovery (%)	Concentrate Grade (%)	Recovery (%)		
Composite 1 TOM WEST	31	58.7	48.4	59.1	74.0		
Composite 2 TOM WEST	32	70.5	64.3	57.3	59.0		
Composite 3A / 3B TOM EAST	33	71.2	70.6	58.9	62.8		
Composite 4 JASON MAIN	34	71.9	33.6	59.7	77.2		
Composite 5 JASON MAIN	35	68.7	41.3	56.4	92.1		
Source: Base Met (2018)		•	1	1	1		

Table 13-9: Summary of Cleaner Flotation Results

13.2.6.2 Tom & Jason Composite Flotation Results

After developing flowsheet conditions through variability testing, composites for the Tom and Jason deposits were created using the ratios shown Table 13-10. Jason is a blend of drill core from Jason Main. Drill core from Jason South was not available for the test program. The T&J Composite represents the estimated life of mine (LOM) proportions of Tom and Jason based on the mine schedule developed for the 2018 PEA.

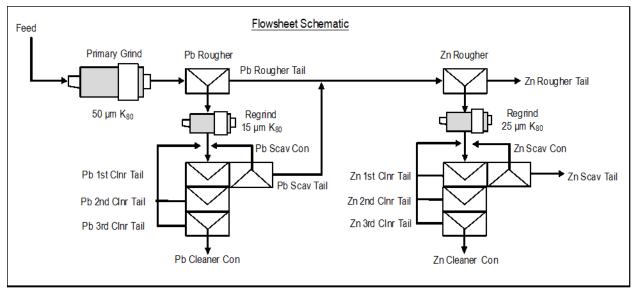
	Tom Composite	Jason Composite	Blend Tom & Jason Composite
	Composite Compos	ition	
Composite 1 (%)	40	-	-
Composite 2 (%)	40	-	-
Composite 3A / 3B Blend (%)	20	-	-
Composite 4(%)	-	60	-
Composite 5(%)	-	40	-
Tom Composite (%)	-	-	65
Jason Composite (%)	-	-	35


	Tom Composite	Jason Composite	Blend Tom & Jason Composite
	Head Grade		
Lead (%)	4.31	1.68	3.31
Zn (%)	7.40	7.35	7.20
Iron (%)	3.5	10.2	5.9
Silver (g/t)	65	4	41
Sulphur (%)	10.6	15.4	12.4
Carbon (%)	1.02	0.81	0.90
Total Organic Carbon (%)	0.58	0.56	0.60
Source: Base Met (2018)		1	

Initial rougher flotation tests were completed on all three composites, T37, T38 and T39, to assess Pb and Zn recoveries at two minute intervals.

Cleaner flotation tests, T40, T41 and T42, were performed on all three composites to determine if high concentrate grades could be achieved at high overall Pb and Zn recoveries. Test 41 results for the Jason composite showed much lower overall recovery, and this may be attributed to the low Pb head grade. Variability test work is required to determine the relationship between Pb recovery and head grade.

Two additional cleaner tests were completed on the blend T&J Composite to determine how Zn regrind size affected Zn concentrate grade. The Zn grade versus recovery curves are shown in Figure 13-6. A Zn regrind size of 17 μ m produced slightly better results compared to the tests with coarser regrind sizes (T42, T48) with a recovery of 73.5% Zn and concentrate grade of 63.8% Zn. Since there was no significant improvement in the grade versus recovery curve, the lower Zn regrind size does not warrant the additional regrinding cost. Based on the results from T42, T47, and T48 the regrind target chosen for design was 25 μ m.



Source: Base Met (2018)

Locked cycle flotation testing was initially carried out on the three samples. Composite 1 was subsequently tested to include a sample at a lower Pb feed grade. An example of the test flowsheet used by Base Met is presented in Figure 13-7.

Figure 13-7: Locked Cycle Test Flowsheet

Source: Base Met (2018)

To investigate how silica content in the Zn concentrate is affected by Zn regrind size, an additional locked cycle test (T49) was carried out on the blend T&J Composite at a slightly lower Zn regrind size of 20 μ m. Although the silica content was lower, further optimization at different

regrind sizes is required to determine what correlations exist. The results did show a relationship developing between zinc grade and silica grade in the final concentrate. The trend is shown below in Figure 13-8. The results indicate that a target grade of 58% and above has silica content below the levels that could result in smelter penalties.

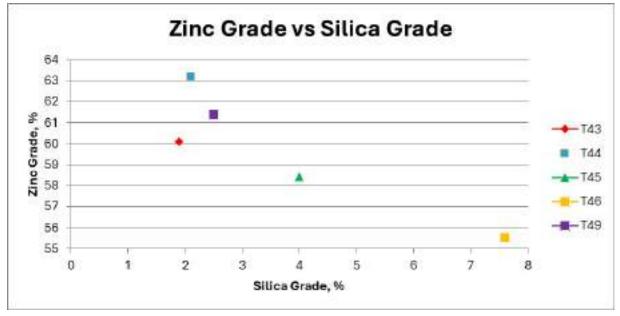


Figure 13-8: Locked Cycle Testing – Zinc and Silica Grades in the Final Concentrate

Source: Base Met (2018)

The results from all locked cycle tests are summarized in Table 13-11.

Composite ID	Test	Pb Flot	ation	Zn Flotation			
	Number	Concentrate Grade (%)	Recovery (%)	Concentrate Grade (%)	Recovery (%)		
Tom Composite	43	69.1	74.4	60.1	85.5		
Jason Composite	44	69.9	55.7	63.2	88.4		
Blend TJ Composite	45	61.5	75.4	58.4	88.9		
Blend TJ Composite	49	69.1	77.5	61.4	84.1		
Composite 1	46	67.4	59.8	55.5	91.0		
Source: Base Met (2018)			•		•		

Reagent dosages were higher than some typical Pb-Zn ore benchmarks, possibly due to the carbon absorbing a portion of the reagents. Overall, the reagents dosages were still generally towards the higher end but not outside the range of industry norms. There may be room for additional reagent and grind size optimization to reduce operating cost while achieving high metal recoveries in future programs.

13.2.7 Settling

Flocculant screening tests and settling rate tests were conducted on the flotation tailings from locked cycle testing. Magnafloc 1011, a high molecular weight anionic flocculent, was chosen for testing, providing the fastest settling rate with very clear overflow water.

The samples had very fast settling rates with very clear overflow, ranging from 128 mm/min to 977 mm/min at 10 g/t to 30 g/t of flocculant. Final densities of the thickened solids ranged from approximately 51% to 64% solids for tests with flocculant added, with decreasing density at higher flocculant dosages.

13.3 2022 Test Program (Boundary Zone)

In 2022, Base Met received drill core from two holes from the new discovery area Boundary Zone and, under the supervision of Fireweed, completed test program BL0755. The test work included comminution, mineralogy, flotation, and ore sorting using XRF (X-ray fluorescence element measurement) and XRT (X-ray transmission density measurement).

The flotation included Pb followed by Zn rougher and cleaner circuits. Two samples included a lead flotation followed by zinc flotation. The other three samples only assessed zinc flotation due to very low Pb head grades. Zinc recovery was between 68% and 97% with concentrate grades between 53% and 63% Zn. The recovery to the lead circuit for Clastic 5 and Volcanic 7 was 38% and 55%, respectively. The lead grades ranged from 44% to 46%. The zinc concentrates were assayed for deleterious elements and mercury ranged from 457 g/t to 1,358 g/t. Typically, a mercury content exceeding 100 g/t will attract penalties. The concentrate payables and penalty terms should be confirmed by a concentrate broker.

Ore sorting using XRT and XRF was investigated as a potential preconcentration process at Steinert Magnetic + Sensor Solutions in Germany (Steinert 2021). Both resulted in low mass rejection with high metal recovery. Further investigation is required to determine if sorting is economical by lowering the cut-off grade and increasing the amount of mineralized material.

13.3.1 Sample Selection

Test Program BL0755 evaluated drill core intervals from nine samples, Volcanic 1, Clastic 2, High Grade 3, Waste 4, Clastic 5, Clastic 6, Volcanic 7, Mudstone 8, and Waste 9, derived from two drill holes NB19-001 and NB19-002. Selected intervals from each hole with similar mineralogy were blended to make the seven composites.

13.3.2 Head Assays

Table 13-12 lists the head assays for the seven composites. The zinc grade ranged from 0.62% to 16.7% Zn. Clastic 5 and Clastic 7 had sufficiently high lead grades to run a lead circuit before zinc flotation. The remaining composites focused on a zinc concentrate only in this program.

Sample					Assay				
	Pb (%)	Zn (%)	Fe (%)	Ag (g/t)	S (%)	S2- (%)	C (%)	ТОС (%)	Hg (g/t)
Volcanic 1	0.10	4.20	21.3	4.9	6.84	6.57	4.16	0.21	31
Clastic 2	0.03	1.39	6.60	1.8	1.79	1.76	1.66	0.36	10
HGC-3	0.37	16.7	8.20	30.0	12.4	11.9	1.51	0.25	126
Clastic 5	0.64	1.56	11.8	10.2	14.90	14.8	1.19	1.04	26
Clastic 6	0.14	0.62	12.8	4.2	16.15	16.1	1.42	1.30	9
Volcanic 7	1.87	3.60	20.1	30.1	18.5	18.4	2.02	0.18	32
Mudstone 8	0.24	1.64	17.1	6.4	8.81	8.75	3.88	1.24	15
Source: Base Met (2022)	•								

Table 13-12: Head Assays

13.3.3 Mineralogy

BMA was conducted on the composites. The results indicated that pyrite was the main sulphur mineral (3% to 36%) followed by sphalerite (0.8% to 27%) with minor amounts of galena (0.02% to 2.5%). Pyrophyllite was present between 0.8% to 4.8% and like organic carbon, can dilute the concentrates if not rejected using depressants (high pH or starch-based reagents such as CMC) or potentially a pre-flotation prior to the Pb/Zn circuits.

13.3.4 Comminution

The comminution testing indicated that the samples tested were moderate to moderately hard at the coarser and finer size range with an average Axb value of 42.9 and BWi of 16.1 kWh/t at a closing screen of 106 μ m.

SMC, at a size fraction of 22.4 mm x 19 mm, and BWi tests were performed on all seven composites. The Axb values ranged from 38.7 to 52.1. The BWi values were between 13.2 kWh/t to 18.3 kWh/t and averaged 16.1 kWh/t at a closing screen size of 106 μ m. The results indicate that the samples tested were moderate to moderately hard. The results are listed in Table 13-13.

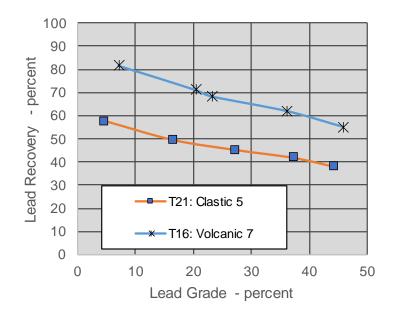

Sample ID	DWi (kWh/m³)	DWi (%)	Mia (kWh/t)	Mih (kWh/t)	Mic (kWh/t)	Α	b	sg	ta	SCSE (kWh/t)	Axb (SMC)	F80 (µm)	Ρ80 (μm)		WiBM (kWh/t)
Volcanic 1	8.32	71	19.1	14.7	7.6	72.2	0.55	3.28	0.31	11.0	39.7	2134	79	1.33	14.6
Clastic 2	6.24	45	17.5	12.7	6.6	68.1	0.67	2.84	0.42	9.6	45.6	1961	80	1.11	17.2
High Grade Composite 3	6.01	41	15.3	11.1	5.7	69.4	0.75	3.14	0.43	9.5	52.1	1838	79	1.54	13.2
Clastic 5	7.05	55	19.5	14.6	7.5	82.4	0.48	2.81	0.36	10.2	39.6	1844	80	1.04	18.3
Clastic 6	7.6	63	19.8	15.0	7.8	84.2	0.46	2.93	0.34	10.6	38.7	1974	80	1.08	17.6
Volcanic 7	9.32	82	18.0	14.2	7.3	68.8	0.59	3.81	0.28	10.5	40.6	2134	79	1.33	14.6
Mudstone 8	6.48	48	18.0	13.2	6.8	81.5	0.54	2.84	0.40	9.7	44.0	1798	79	1.14	16.9
Source: Base Met (2022)	•		•				•	•				•		•	

Table 13-13: Comminution Results

13.3.5 Flotation

Initially, rougher flotation tests were completed at a target grind size P_{80} of 75 µm. The rougher flowsheet included a lead rougher for Clastic 5 and Volcanic 7 followed by a zinc rougher. The other composites were tested using a zinc only flowsheet. The zinc rougher recovery ranged from 84.7% to 99.3%. The lead recovery for Clastic 5 was low at 10.9% and 77.5% for Volcanic 7.

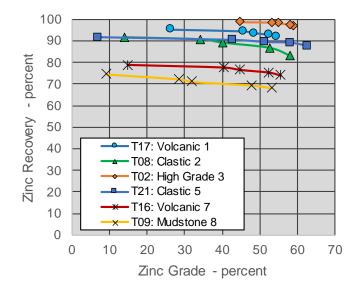

With the rougher conditions set, the open cleaner tests, T02, T08, T09, T16, T17, and T21, were completed at a primary grind targeting P_{80} 75 microns. The zinc recovery was between 68% to 97% Zn with grades between 53% and 63% Zn. Lead recovery measured 38% and 55% Pb for Clastic 5 and Volcanic 7, respectively. The lead grades were 44.3% and 45.8% Pb. The recovery curves are shown in Figure 13-9 and Figure 13-10, and the results listed in Table 13-14.

Figure 13-9: Open Circuit Lead Recovery Curves

Source: Base Met (2022)

Source: Base Met (2022)

Comp	Hea	Head Assay Te			Cleaner Performance						
		(%)		Product	Mass	A	ssay	Dist	ribution		
	Pb	Zn			(%)	Pb (%)	Zn (%)	Pb (%)	Zn (%)		
Volcanic 1	0.10	4.20	17	Zn Con	7.0	0.12	54.4	26.6	92.2		
Clastic 2	0.03	1.39	8	Zn Con	1.9	0.16	58.0	19.3	83.3		
High Grade 3	0.37	16.7	2	Zn Con	28.0	0.78	59.0	61.0	97.1		
Clastic 5 0.64 1	0.64 1.56 2	0.64 1.56 21	21	Pb Con	0.5	44.3	0.51	38.1	0.2		
				Zn Con	2.2	0.51	62.6	2.0	87.8		
Volcanic 7	1.87	3.60	16	Pb Con	2.2	45.8	1.70	55.3	1.1		
				Zn Con	4.5	0.51	55.6	1.2	73.9		
Mudstone 8	0.24	1.64	9	Zn Con	1.9	1.43	53.2	13.2	68.0		

Table 13-14: Open Circuit Cleaner Tests – Boundary Zone

Optimization tests were completed on Volcanic 7 with a focus on lead performance. The test included CMCm to reduce the carbon flotation increased collector, as well as the use of sodium cyanide and zinc sulphate to depress zinc and pyrite in the lead circuit. A range of regrind sizes were investigated, however, there was not a significant improvement at finer grinds, and no further tests were completed.

13.4 2023 Test Program (Boundary Zone)

In 2023 another program was completed by Base Met (BL1140) to evaluate metallurgical performance of two massive sulphide composites, NB21-001-MS-01 and NB20-004-MS-02 from Boundary Zone. A preliminary investigation of the two composites included mineral abundance, comminution, and flotation.

The flotation for BL1140 focused on a flowsheet with and without pre-float to reduce carbon prior to the Zn recovery at a target primary grind of P80 75 μ m and regrind of P80 25 μ m. Flotation results for the two Boundary Zone massive sulphide composites measured Zn recoveries in the mid to high 80 percentile with grades from 43% to 54.6% Zn.

13.4.1 Sample Selection

Two samples from the Boundary Zone massive sulphide domain were evaluated to assess their metallurgical performance. Drill core intervals were collected from holes NB21-001 and NB20-004 (drilled in 2021 and 2020, respectively) to make up massive sulphide composites and sent to Base Met in Kamloops, BC.

13.4.2 Head Assays

Table 13-15 shows the head grade for each of the composites created for the BL1140 test program. A zinc head grade in the same range as the LOM average for Tom and Jason was targeted to enable comparison across different zones. For comparison, the zinc head grade of the Tom and Jason composites from program BL0236 ranged from 4.71% to 8.70%.

Composite ID	Weight	Measured Head Grade									
	(kg)	Ag (g/t)	Pb (%)	Zn (%)	Fe (%)	S (%)					
NB21-001-MS-01	59.4	40.5	0.7	8.7	19.1	31.9					
NB20-004-MS-02	111.7	35.5	0.5	5.1	27.6	40.7					
Source: Base Met (2023)	•				•	•					

Table 13-15: Composite Head Grades

13.4.3 Mineralogy

The mineralogy of the massive sulphide composites indicated the samples tested have a very high pyrite content (47.6% and 69.9%). The higher pyrite samples will require more selective flotation parameters to produce a high-grade zinc concentrate. In these samples the clay content is lower than the samples tested in BL0755. Sphalerite was the next highest sulphur mineral present in the samples. Galena was low, which is consistent with other samples across the Macpass Project.

13.4.4 Comminution

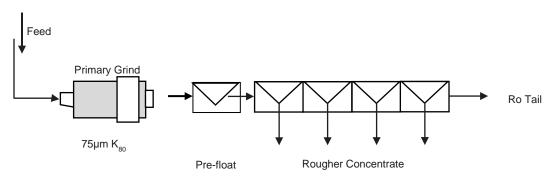
The comminution test work included JKDrop Weight and BWi. The BWi tests were completed at a closing screen size of 106 microns to achieve results close to the primary grind P_{80} of 75 microns. The results indicate the material is moderate to moderately hard. Table 13-16 summarizes the comminution results.

The Boundary Zone massive sulphide samples had similar or softer Axb values and the BWi was in the same range as the Boundary Zone samples in the 2022 program.

Composite ID	Axb (-)	Bwi (kWh/t)
NB21-001-MS-01	57.5	16.3 @79 µm
NB20-004-MS-02	56.4	14.3 @78 µm
Source: Base Met (2023)		

Compared to the Boundary Zone samples tested in 2022, the massive sulphide material tested in 2023 is slightly softer for the Axb value and the BWi is slightly harder. The BWi for the Tom and Jason samples ranged from 8.8 kWh/t to 14.0 kWh/t, indicating the material tested is softer than Boundary Zone. This data set is very small, and more information is required to thoroughly evaluate the hardness and properly size the comminution circuit.

13.4.5 Flotation


To evaluate the flotation performance rougher and cleaner tests were completed. BL0755 flowsheet and test work parameters were used for the initial assessment to enable a direct comparison. Very little lead was present in the massive sulphide samples and therefore sequential Pb/Zn tests 11 and 12 were conducted on NB21-001-MS-01 and NB20-004-MS-02, respectively.

Flotation results for T11 resulted in a lead concentrate with a grade of 41.6% and recovery of 30.1% Pb for NB21-001-MS-01. NB20-004-MS-02 T12 recovered 2.6% Pb with a grade of 22.4% to a lead concentrate. The poor lead metallurgical performance may be attributed to the low head grade of these composites. The zinc concentrates produced in both tests were in the same range as previous cleaner tests completed on two massive sulphide composites.

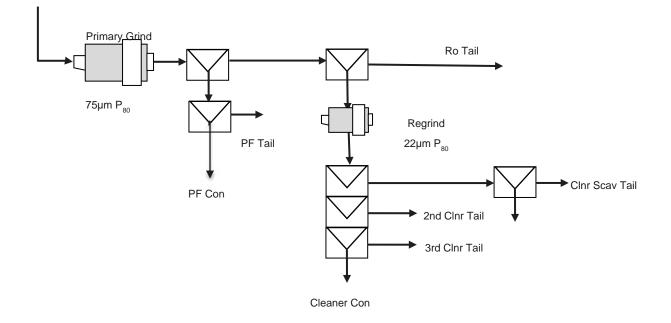
13.4.5.1 Rougher Flotation

Two rougher flowsheets were considered: with and without pre-float. The BL0755 primary grind of 80% passing (P_{80}) 75 microns was used for the flotation tests. Sodium Isopropyl Xanthate (SIPX) was used as the collector and CMC (PE26) was used to suppress carbon for the flowsheet without pre-float. The pre-float flowsheet is shown below in Figure 13-11. The pre-float flowsheet required less collector (SIPX) and no CMC was required resulting in lower reagent consumption and cost. The overall results are displayed in Table 13-17.

Figure 13-11: Pre-Float Flowsheet

Table 13-17:	Rouaher	Flotation	Results

Test	Weight		Assay (% or g/t)							Distribution (%)						
	%	Pb	Zn	Fe	S	С	Ag	Pb	Zn	Fe	S	С	Ag			
NB21-001-MS-001																
Ro-01 No Pre-float	39.8	1.30	19.4	26.2	42.4	0.86	60.0	71.7	94.8	46.7	53.7	36.7	63.4			
Ro-03 Pre-float	15.9	1.66	38.5	10.9	33.1	0.81	78.0	42.0	88.1	7.7	16.5	12.8	38.2			
NB20-004-MS-002																
Ro-02 No Pre-float	28.4	1.00	14.6	24.3	44.0	0.7	53.6	56.2	92.2	23.3	30.6	29.8	47.0			
Ro-04 Pre-float	20.5	1.45	18.9	23.7	40.3	0.70	72.0	52.7	90.2	15.6	19.5	25.4	46.0			
Source: Base Met (202	Source: Base Met (2023)												•			


The pre-float flowsheet tests had lower mass pulls and lower recoveries to the zinc concentrate, which could relate to zinc losses in the pre-float concentrate. The reagent dosage was lower than the pre-float tests, and no CMC was added to the zinc rougher. The increased operating costs due to the higher reagent dosages in the flowsheet without pre-float exceeded the value of the increase in recovered metals. The NB21-001-MS-01 rougher test Ro-01 without pre-float had a much higher mass pull and recovery compared to the pre-float test Ro-03. The zinc recovery without pre-float was in the same range as that observed with BL0755 results at 94.8% Zn.

The results for NB20-004-MS-02, Ro-02 and Ro-04, were similar with and without the pre-float flowsheets.

13.4.5.2 Cleaner Flotation

Open circuit cleaner tests were carried out using both flowsheets (with and without pre-float). Figure 13-12 illustrates the pre-float flowsheet. After the zinc rougher, the product was reground to target P₈₀ 22 microns to 25 microns.

Figure 13-12: Cleaner Pre-Float Flowsheet

Six cleaner tests were completed with and without pre-float prior to zinc rougher flotation. Two tests were run on NB21-001-MS-01. Performance was similar whether there was or was not a pre-float in the flowsheet. The results are listed in Table 13-18.

Test	Regrind (µm)	W	eight	Assay (% or g/t)					Distribution (%)						
		%	grams	Pb	Zn	Fe	s	С	Ag	Pb	Zn	Fe	S	С	Ag
T05: Pre-float	27.0	14.2	143.4	2.0	50.0	7.0	36.3	0.9	102	42.8	88.9	4.6	16.4	11.7	43.5
T07: No Pre-float	26.0	12.5	126.4	1.8	54.6	5.0	35.1	0.5	103	32.1	84.9	2.9	14.0	7.3	34.9
Source: Base Met (2023)															

Four cleaner tests were completed on composite NB20-004-MS-02. Two of the tests were completed at a regrind size of 30 microns and 39 microns. Tests with a coarse regrind had grades that were lower with similar recoveries compared to the finer regrind tests. Target regrind of 25 microns was chosen to optimize the concentrate grade and recovery. The test results for the cleaner tests for NB20-004-MS-02 are shown in Table 13-19.

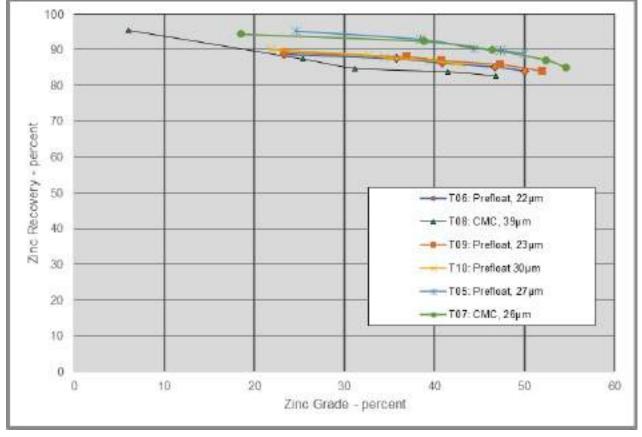

Test	Regrind (µm)	W	eight	Assay (% or g/t)					Distribution (%)						
		%	grams	Pb	Zn	Fe	S	С	Ag	Pb	Zn	Fe	S	С	Ag
T06: Pre-float	22.0	7.3	73.9	2.0	50.0	7.3	36.6	0.5	119	29.7	84.0	1.8	6.5	5.1	32.9
T08: No Pre-float	39.0	7.7	77.3	1.5	46.8	9.4	39.1	0.9	112	24.7	82.7	2.4	7.1	9.9	26.0
T09: Pre-float	23.0	7.0	70.4	1.9	52.0	6.5	37.5	0.3	128	28.8	84.0	1.5	5.9	3.4	26.4
T10: Pre-float	30.0	8.6	86.4	2.0	43.0	12.4	39.6	0.4	121	37.1	85.8	3.4	8.2	5.4	31.7
Source: Base Met (2023)															

Table 13-19:	Cleaner F	lotation	Results –	Boundary Zone
--------------	-----------	----------	------------------	---------------

Figure 13-13 compares the zinc concentrate grade versus recovery. Tests T05 and T07 were completed on NB21-001-MS-01 and tests T06, T08, T09 and T10 on NB20-004-MS-02. The grade recovery curves demonstrate that the two tests completed on NB21-001-MS-01 follow the same grade recovery curve (T05 and T07).

There would be a slightly higher reagent cost without pre-float due to the addition of CMC and higher SIPX requirement, however, that cost would be offset by the increase in recovered metal. A coarser regrind size for NB20-004-MS-02 tests did not perform as well with or without pre-float. A regrind size of P_{80} 25 microns provided the best results.

Figure 13-13: Zinc Grade Versus Recovery Curve

Source: Base Met (2023)

NB21-001-MS-01 had a higher zinc head grade and performed better than NB20-004-MS-02. The results were in the same range as the 2022 Boundary Zone samples tested in BL0755 with zinc recoveries ranging from 82.7% to 88.9% and grades from mid 40% to mid 50%.

One sequential open circuit cleaner test was completed on each of the composites to produce lead and zinc concentrates. NB21-001-MS-01 (T11) produced a lead concentrate with a grade of 41.6% recovering 30.4% Pb. The zinc concentrate graded 58.4% with a recovery of 80.5% Zn. Although the zinc recovery was lower than previous cleaner tests without a lead circuit, the results follow a similar recovery curve compared to T05 and T07. The cleaner test on NB20-004-MS-02 recovered only 2.6% Pb to the lead concentrate. The zinc concentrate had lower recovery to the rougher concentrate and final concentrate than observed previously. This result could be due to zinc losses to the lead circuit and will be investigated in subsequent test work.

13.5 Concentrate Quality

13.5.1 Tom and Jason

The Pb and Zn concentrates from the LCTs, as well as concentrates from the composites 1 through 5 cleaner tests, were analyzed for minor elements. Impurity levels were generally low and any occurrences are anticipated to be managed via blending strategies. Elevated silica levels can affect some lead and zinc smelters if above 5% in concentrate. Silica content in the Pb and Zn concentrates were well below the 5% threshold for all samples except Composite 1 where it measured 5.4% and 7.6% in the Pb and Zn concentrates, respectively. Silica content was measured using sodium peroxide fusion - ICP analysis.

13.5.2 Boundary Zone

The quality of the Boundary Zone zinc concentrate was generally acceptable; however, cadmium, mercury, and antimony were elevated based on preliminary test results. These levels of impurities in the zinc concentrate may incur penalties and should be verified with the receiving smelter. Further optimization work is required to determine whether these elements can be further reduced in the final concentrate or mitigated through blending.

Element	Units	Method	Volcanic 1	Clastic 2	High Grade 3	Clastic 5	Volcanic 7	Mudstone 8	NB21-001-MS-01	NB20-004-MS-02		
			T17 Zn Con	T08 Zn Con	T02 Zn Con	T21 Zn Con	T16 Zn Con	T09 Zn Con	BL1140-05 Zn Con	BL1140-09 Zn Con		
Cd	ppm	FUS-MS-Na2O2	1620	2770	3380	2860	1980	1570	2210	3000		
Hg	ppm	AR-ICP/LF-ICP	666	680	457	1358	956	728	669	884		
Sb	ppm	FUS-MS-Na2O2	136	279	604	229	158	250	579	4260		
Source: E	Source: Base Met (2022, 2023)											

Table 13-20: Zinc Concentrate Minor Element Results for BL0755 and BL1140

13.5.3 Gallium and Germanium Concentrations

The Macpass zinc concentrate from the Boundary Zone material shows elevated levels of gallium and germanium. The indications on germanium levels in Boundary zinc concentrate range from 85 ppm to 285 ppm, with gallium levels ranging from 17 ppm to 56 ppm, which may be material to a smelter with the capability to recover these elements.

There is currently no precedence for payment of germanium or gallium in zinc concentrates. It is likely that other favorable contract terms may be obtained in the sale of the Macpass zinc concentrates to smelters which recover these elements. These would be terms such as lower treatment charges, freight benefits, or beneficial penalties.

The Tom-Jason concentrates were not assayed for gallium and germanium in the 2018 test programs, so levels in these concentrates is undetermined.

14.0 Mineral Resource Estimates

14.1 Summary

Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards for Mineral Resources and Mineral Reserves (CIM (2014) definitions) were used for Mineral Resource classification.

SLR's engineering optimization considered both open pit (OP) and underground (UG) conceptual operating scenarios, based on a block by block NSR calculation. Table 14-1 summarizes Fireweed's Mineral Resource estimates for Zn, Pb, and Ag, effective as of September 4, 2024. Table 14-2 provides the Mineral Resource estimates for Zn, Pb, and Ag within the open pit scenario, while Table 14-3 presents the underground Mineral Resources for Zn, Pb, and Ag located below the open pit, both effective as of September 4, 2024.

The reported Mineral Resources use an open pit NSR cut-off of C\$30/t and an underground NSR cut-off of C\$112/t for Tom, Jason, End Zone, and Boundary deposits. Mining sensitivities were performed using various NSR cut-off grades and are presented in Section 14.6.2 of this Technical Report.

The QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimates.

Class	Area	Mass		Gr	ade			Metal	
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)
Indicated	Tom	17.52	9.90	6.30	3.34	32.9	2,435	1,291	18.56
	Jason	3.80	9.09	7.62	1.86	1.7	638	156	0.21
	End Zone	0.34	16.15	3.81	12.32	86.2	29	93	0.95
	Boundary	34.32	5.63	4.86	0.55	21.6	3,682	412	23.83
Total Indica	ated	55.98	7.27	5.50	1.58	24.2	6,784	1,952	43.54
Inferred	Tom	18.94	9.10	6.56	2.30	25.2	2,738	960	15.37
	Jason	11.65	10.40	5.48	4.33	48.2	1,407	1,112	18.05
	End Zone	0.44	8.76	1.86	6.88	48.1	18	67	0.68
	Boundary	17.43	3.75	3.48	0.23	9.5	1,337	87	5.32
Total Inferr	ed	48.46	7.48	5.15	2.08	25.3	5,500	2,226	39.42

Table 14-1: Open Pit and Underground Mineral Resource Estimate, September 4, 2024

Notes:

1. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards for Mineral Resources and Mineral Reserves (CIM (2014) definitions) were used for Mineral Resource classification.

2. g/t: grams per tonne; Mlb: million pounds; Moz: million troy ounces; Mt: million metric tonnes.

3. Mineral Resources are reported within conceptual open pit (OP) shells and underground (UG) mining volumes to demonstrate Reasonable Prospects for Eventual Economic Extraction (RPEEE), as required under NI 43-101; mineralization lying outside of the OP shell or UG volumes is not reported as a Mineral Resource. Note the conceptual OP shell and UG volumes are used for Mineral Resource reporting purposes only and are not indicative of the proposed

(Class	Area	Mass		Gr	ade			Meta	I
			(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)
		thod; future mini neral Reserves a						ombination of	both. Mine	ral Resources
4.	All quantiti rounding.	es are rounded t	to the appro	priate num	ber of sigr	nificant figu	ires; conseq	uently, sums	may not ad	ld up due to
5.		ies for each dep e but analytical r							ensity meas	surements were
6.		lineral Resource dary Zone), and				of 45°, Re	evenue Fact	ors of 0.8 (Tor	m, End Zon	ne), 0.6 (Jason),
7.	10 m H an	nd Mineral Reso d 5 m L sub-sha pes and a minim	pes and mi	nimum wid	ths of 2 m	at Tom, Ja	ison, and Er	nd Zone; and 2	20 m H by 2	
8.	C\$:US\$ ex	values and zinc change rate of 2 tion domain.								
9.	deposit or weighted a	been calculated mineralization d average of the Zi porting volumes	omain. For nEq block v	reporting s	ubtotals ar	nd totals, Z	nEq values	have been ca	lculated us	ing the mass
10.		ve date of the M 023 with a final o								ncluding holes m holes drilled in
11.	that would Resources once econ than that a expected t	ineral Resources enable them to s will be converte omic considerati upplied to an Indi hat the majority exploration.	be categori ed to the Me ions are app cated Mine	zed as Min easured an plied. The I ral Resoure	eral Reser d Indicated nferred Mi ce and mus	ves. There d categorie neral Reso st not be co	is also no o s through fu ource in this onverted to	certainty that t rther drilling, o estimate has a Mineral Res	hese Inferr or into Mine a lower lev erve. It is r	ed Mineral eral Reserves, el of confidence easonably

Class	Area	Mass		Gra	ade			Ме	tal
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)
Indicated	Tom	13.63	8.60	5.84	2.63	24.1	1,754	789	10.56
	Jason	1.63	8.63	6.96	2.12	2.1	251	76	0.11
	End Zone	0.32	16.43	3.91	12.51	87.3	28	89	0.90
	Boundary	33.48	5.46	4.72	0.53	20.9	3,486	388	22.45
Total Indic	ated	49.06	6.51	5.10	1.24	21.6	5,518	1,343	34.02
Inferred	Tom	4.20	10.16	6.37	3.24	39.7	591	300	5.37
	Jason	1.06	6.59	5.68	1.16	0.9	132	27	0.31
	End Zone	0.24	9.57	2.27	7.32	50.1	12	38	0.38
	Boundary	16.88	3.63	3.39	0.21	8.9	1,260	77	4.85
Total Inferred 22.37		22.37	5.06	4.04	0.90	14.8	1,995	442	10.63
Note: See Ta	ble 14-1 footnotes		•		•		•		

Table 14-2: Open Pit Mineral Resource Estimate, September 4, 2024

Class	Area	Mass		Gra	ade		Metal				
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)		
Indicated	Tom	3.90	14.46	7.93	5.85	63.9	681	502	8.00		
	Jason	2.17	9.43	8.12	1.67	1.5	388	80	0.10		
	End Zone	0.02	11.43	2.16	9.07	68.1	1	4	0.42		
	Boundary	0.84	12.46	10.55	1.31	51.0	196	24	1.38		
Total Indic	ated	6.92	12.64	8.29	4.00	42.8	1,266	610	9.52		
Inferred	Tom	14.74	8.80	6.61	2.03	21.1	2,148	660	10.00		
	Jason	10.59	10.78	5.46	4.65	52.9	1,274	1,085	18.01		
	End Zone	0.20	7.83	1.40	6.38	45.9	6	29	0.30		
	Boundary	0.56	7.35	6.29	0.84	26.6	77	10	0.47		
Total Inferred 26.09		26.09	9.56	6.09	3.10	34.3	3,505	1,784	28.79		

 Table 14-3:
 Underground Mineral Resource Estimate, September 4, 2024

Note: See Table 14-1 footnotes.

14.2 Resource Database

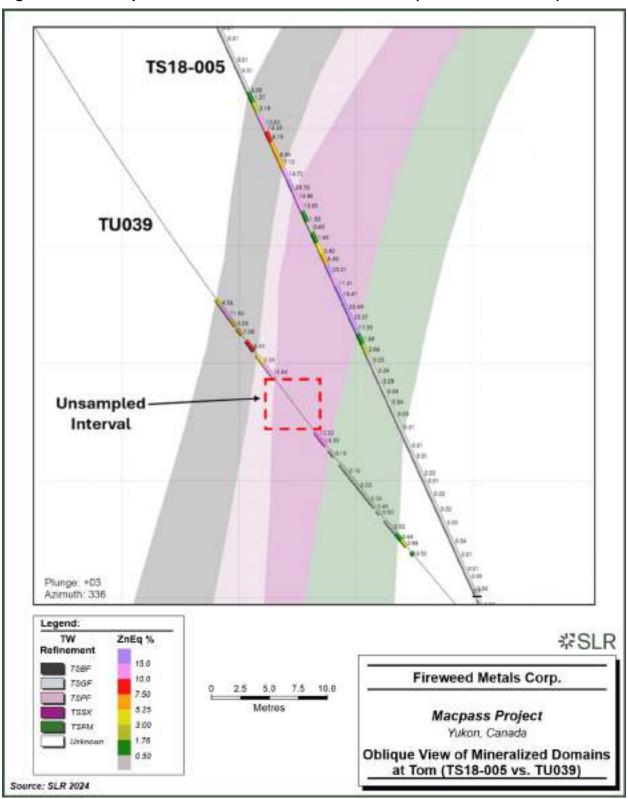
The drilling database is maintained in Seequent's MX Deposit, with drill hole location information in NAD83 datum, UTM Zone 9N projection. Drill hole azimuths are recorded in True North and converted to a Grid Azimuth by applying a grid convergence correction. Measurements are in metric units.

At Tom, drilling includes seven RC drill holes, 190 diamond drill holes from surface, and 80 diamond drill holes from underground workings. At Jason, there are two RC drill holes and 134 diamond drill holes from surface. End Zone has 19 diamond drill holes from surface, and Boundary Zone has 112 diamond drill holes from surface.

The data was exported from Fireweed's MX Deposit database and imported into Leapfrog Geo 2023.2.1 for analysis, wireframe building, block modelling, and resource estimation. Three Leapfrog projects were created for the four deposits (Tom, Jason and End Zone, and Boundary Zone), all sharing the same MX Deposit export.

There have been 74 holes (14,482 m) drilled at Tom, Jason, and End Zone since the previous MRE was completed in 2018. Fifty-nine of these new drill holes were drilled at Tom, ten drill holes were drilled at Jason, and five drill holes were drilled at End Zone. At Jason and Boundary all holes have been drilled from surface.

Since the previous MRE was completed, a thorough review of assay certificates found many silver assay intervals were recorded as 'tr' representing trace values. These were previously treated as null values and have now been assigned half detection limit values.


Poor recovery of mineralized horizons during historical drilling led to missing assays which are believed to be mineralized material based on more recent drilling from nearby locations and the hole to hole consistency of the mineralization width in most areas where samples are missing. As such, missing assays have been evaluated on a case by case basis at Tom, Jason, and End

Zone. In some instances, unsampled intervals are treated as null and in others they are treated as half the detection limit for that commodity.

At Jason and End Zone, 1.0% of the intercepted intervals are unsampled for zinc, 0.1% are unsampled for lead, 11.2% are unsampled for silver, and 1.7% are unsampled for barium. For Tom, 9.4% of the intercepted intervals are unsampled for zinc, 9.2% are unsampled for lead, 9.1% are unsampled for silver, and 15.1% are unsampled for barium.

Figure 14-1 provides an example of the unsampled intervals within the mineralized domains at the Tom deposit. Hole TU039, drilled in 1970, has an unsampled interval from 48.25 m to 53.95 m. The drill logs for this hole describe the presence of soft sulphides that were washed out during drilling. Hole TS18-005 was drilled in 2018, 12 m away from the missing intercept, and was able to confirm the interpreted mineralization continuity. There are multiple other instances at Tom where newer drilling, drilled within 30 m of the historical drill holes, is able to confirm the interpreted mineralization continuity.

SLR recommends that Fireweed consider twinning historical drill holes in mineralized areas where zinc, lead, or silver assays were not previously conducted, or where core loss occurred due to soft sulphides, to enhance data quality and improve confidence in local grade estimates.

At Boundary, 99% of the intercepted intervals for the mineralized domains are sampled for zinc, lead and silver, and 91% are sampled for barium. At Boundary, all unsampled Zn, Pb and Ag intervals were assigned half the detection limit; missing Ba samples were ignored.

Compared to the intercepted intervals for zinc, only a limited amount of germanium and gallium samples exist across each deposit. For Tom, there are only 1,498 germanium and 1,615 gallium samples compared to 4,263 zinc samples. For Jason and End Zone, 370 germanium and 312 gallium samples exist compared to 1,822 zinc samples. Boundary also has a limited set of germanium and gallium data with 10,281 germanium and 20,004 gallium samples compared to 22,317 zinc samples (sample coverage for the mineralized domains, however, is 91% and 82% for Ga and Ge, respectively). Due to this limited assay coverage, regressions with zinc or zinc and aluminum (where possible) were used where no gallium or germanium assay data was available. Gallium and germanium were not considered as payables or credits within the NSR calculations used to define the mineral resource.

14.3 Tom Deposit

14.3.1 Geological Interpretation

The Tom deposit estimate is based on three separate zones: Tom West (previously referred to as Tom Main), Tom Southeast, and Tom East. Tom North, drilled in 2019, is located north of Tom West and has now been found to be contiguous with Tom West. All three zones contain Zn-Pb-Ag-Ba mineralization which varies from well laminated and stratiform through to a brecciated stockwork zone. The Tom deposit is separated into three zones based on two interpreted deposit scale faults. The Tom fault is oriented north-south, providing a natural limit to the eastward extension of Tom West mineralization. The Tom Fault also provides a natural limit to the westward extension of the Tom Southeast mineralization. A second east-northeast trending fault named TWZ is truncated to the west by the Tom fault and serves to separate the north-northwest striking, west dipping Tom East mineralization from the east-northeast striking, south dipping, Tom Southeast mineralization. The Tom geological model and interpreted faults were provided by Fireweed and further refined by SLR.

An overburden wireframe was created to cover all three zones. The thickness of the overburden horizon ranges between no overburden to 65 m locally. The overburden surface was thinned in some areas where there was mapped outcrops and clear topographic highs (i.e., cliffs). These mapped outcrops were measured with differential GPS and were used to guide the mineralization wireframes to surface.

Underground geological maps and underground sampling were also used to define the mineralization domains below surface. These samples were only used for refining the geological model and were not used for grade estimation.

Figure 14-2 presents the mineralized domains for the Tom deposit in plan view.

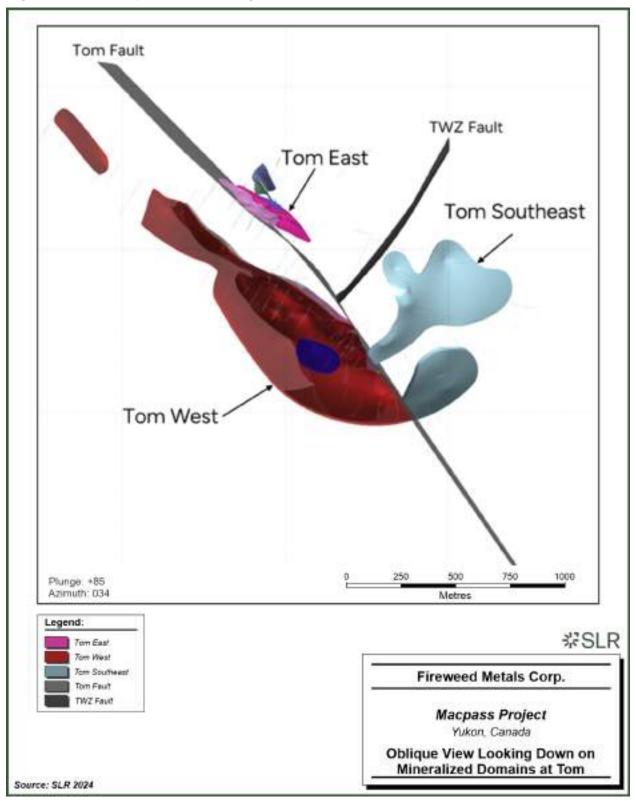


Figure 14-2: Oblique View Looking Down on Mineralized Domains at Tom

14.3.1.1 Tom West

Mineralization domains were determined using a combination of logging observations, assay data, supervised machine learning, and detailed reviews of these products alongside core photos.

Drill core was logged in the field using traditional observational methods by a team of experienced geologists familiar with the geology and styles of mineralization present at the deposit. A training dataset was selected from logging and assay data to train models (using the random forest algorithm) to predict mineralization style from assay and bulk density data. Several iterations of the models were run based on the suite of elements available within different generations of drilling. Results of the model predictions were reviewed in spatial context against original logs, re-logs, and core photos for every mineralized interval where sufficient assay data and core photos were available by Fireweed's Vice President, Geology, Jack Milton. Interval selections were made based on this holistic review.

The units defined include footwall mineralization (TSFM), massive sulphide (TSSX), pink facies (TSPF), grey facies (TSGF), and black facies (TSBF), collectively the Tom West sub-domains. Section 7 of this Technical Report provides further information on the nature of these geological units. The wireframing used in the previous Mineral Resource estimate combined the different sub-domains into a single mineralized wireframe, excluding the footwall mineralization. Defining the lithologic units by their geochemical signature is an improvement to the geological interpretation and has allowed the generation of well defined and robust estimation domains.

The geological model for Tom West was created in Leapfrog Geo 2023.2.1 and constrained to the western block defined by the Tom fault. A vein model was used to capture the mineralized envelope, and the midpoint reference surface of the envelope was used as the reference surface to guide the creation of the Tom West sub-domains using a series of offset deposit/erosional surfaces. There are no additional sub-domains that have been defined to reflect the stratigraphy of the unmineralized wall rock outside of the mineralized envelope.

Tom West mineralization has a strike length of 1,645 m, down dip extension between 280 m and 670 m and a thickness between two metres and 70 m. The mineralization has a minimum thickness of two metres.

Figure 14-3 show the Tom West mineralization domains in plan view and cross section, respectively. Figure 14-4 show the Tom west mineralization domains in longitudinal section and plan view, respectively.

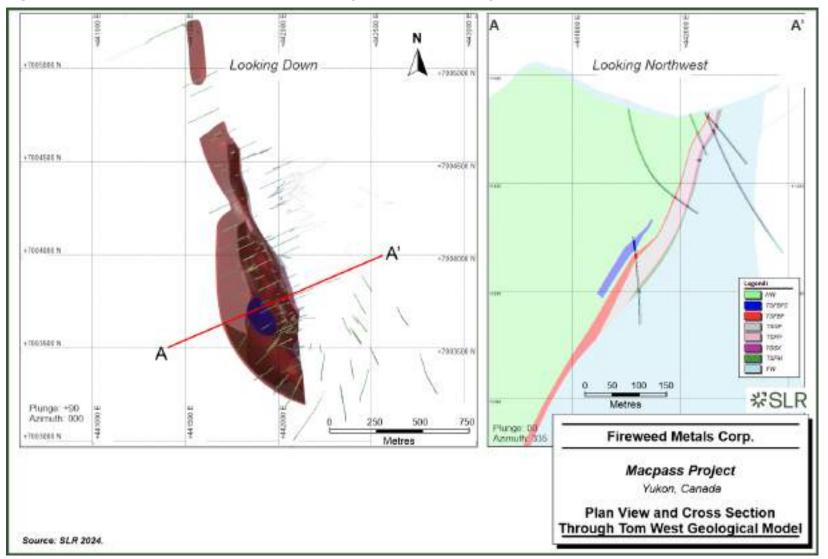
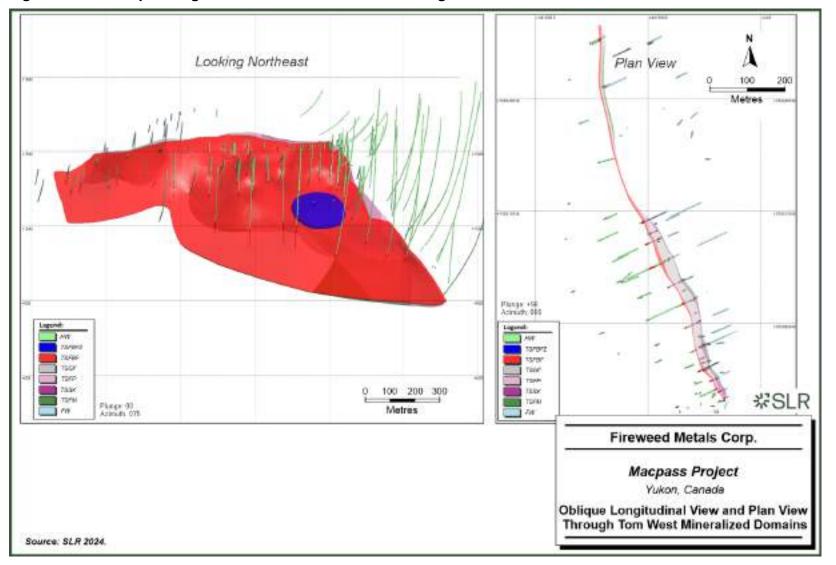
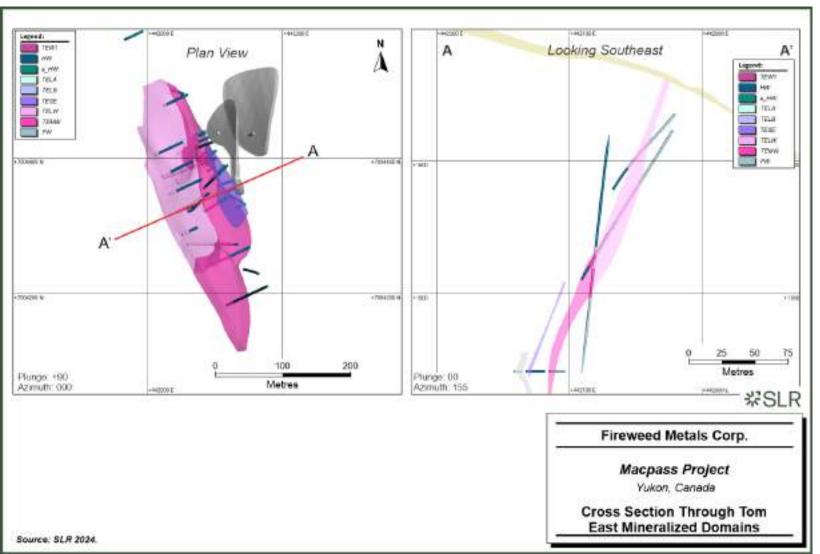



Figure 14-3: Plan View and Cross Section Through Tom West Geological Model

14.3.1.2 Tom Southeast

Tom Southeast is modelled as a single mineralized zone due to its thin nature and the inability to model congruent domains based on the internal facies interpretation. A vein model was used to create the wireframes.


The Tom Southeast mineralization has a strike length of approximately 550 m, down dip extension of up to 750 m, and varies in thickness from approximately 12 m to 40 m.

14.3.1.3 Tom East

Tom East contains one main mineralized unit with two internal facies: massive and laminated sulphides. There is a thin stratiform unit located to the east of the main mineralized unit and two smaller en-echelon domains further to the east. The geological model created using a vein modelling approach to create the final estimation domains.

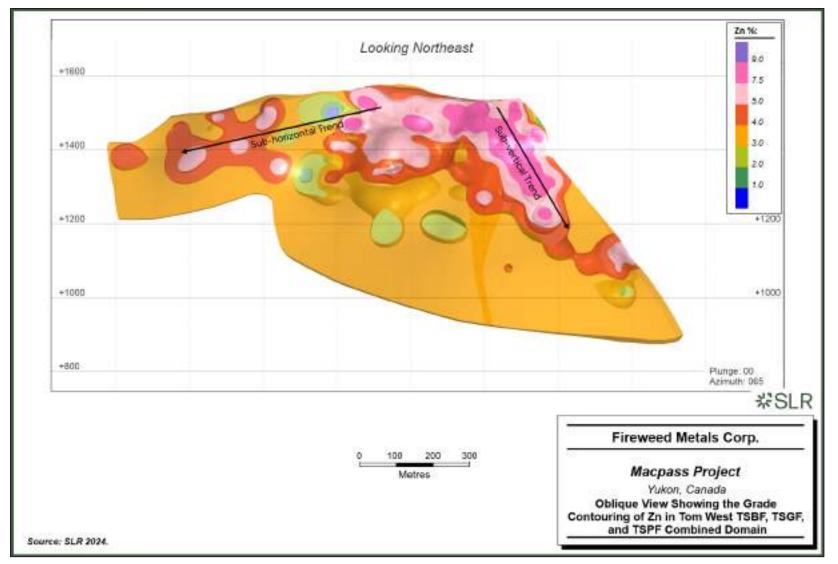
Tom East mineralization has a strike length of approximately 450 m, down dip extension of up to 250 m, and varies in thickness from two metres to 45 m.

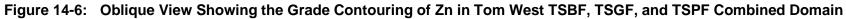
Figure 14-5 shows a plan view and cross section through the Tom East mineralized domains.

14.3.2 Estimation Domains

Once the geological model was complete, raw assays within each mineralized domain were reviewed using basic statistics, histograms, box plots, and contact plots to further refine the estimation domains. Grade contouring within each mineralized domain was also completed.

When Tom estimation domains are constrained by unmineralized drill holes, the interpretation is terminated at half the distance to the nearest unmineralized drill hole. In areas where mineralization remains open, the interpretation is extended a reasonable distance beyond the last mineralized interval, typically based on the local drill hole spacing for that area.


14.3.2.1 Tom West


When statistics and contact plots demonstrated that a single population exists across multiple horizons in Tom West, those wireframes were merged for the final estimation domain. Table 14-4 lists the estimation domains across the various estimation variables.

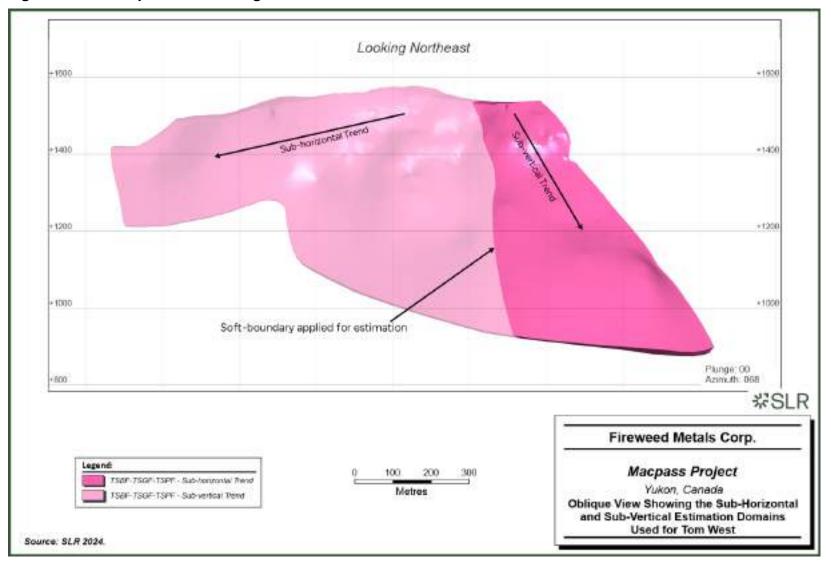

Variable	Estimation Domain	Variable	Estimation Domain
Zn	TSBF2	Ge	TSBF2
	TSBF, TSGF, TSPF combined		TSBF, TSGF, TSPF combined
	TSSX		TSSX
	TSFM		TSFM
Pb	TSBF2	Ga	TSBF2
	TSBF, TSGF combined		TSBF, TSGF, TSPF combined
	TSPF		TSSX
	TSSX		TSFM
	TSFM	Density	TSBF2
Ag	TSBF2		TSBF
	TSBF, TSGF combined		TSGF
	TSPF		TSPF
	TSSX		TSSX
	TSFM		TSFM
Ва	TSBF2		
	TSBF		
	TSGF, TSPF combined		
	TSSX		
	TSFM		

Table 14-4: Tom West Estimation Domains

Trend analysis through grade contouring shows two differing trends within the estimation domains at Tom West. As such, each estimation domain was further split into a sub-horizontal and sub-vertical section. This allowed for appropriate plunges for the anisotropy to be assigned during estimation. A soft boundary was used between each estimation domain's sub-horizontal and sub-vertical sections. Figure 14-6 shows the grade contouring of Zn in Tom West for the TSBF, TSGF and TSPG domains. Figure 14-7 shows the sub-horizontal and sub-vertical sections used for Tom West.

14.3.2.2 Tom Southeast

A single domain was modelled for Tom Southeast and as such this was used as the estimation domain with a hard boundary for all variables (Table 14-5).

 Table 14-5:
 Tom Southeast Estimation Domains

Variable	Estimation Domain
Zn, Pb, Ag, Ba, Ge, Ga	min_combined
Density	

14.3.2.3 Tom East

Review of the raw statistics and contact plots between the different horizons at Tom East support each modelled wireframe to remain as an estimation domain with hard boundaries for all variables (Table 14-6).

 Table 14-6:
 Tom East Estimation Domains

Variable	Estimation Domain
Zn, Pb, Ag, Ba, Ge, Ga	TELW
Density	TEMW
	TESE
	TELA
	TELB

14.3.3 Assay Statistics and Capping

SLR applied high-grade capping for some zinc, lead, and silver assays to limit the influence of a small number of extreme values located in the upper tail of the metal distributions. Raw assays were reviewed using basic statistics, histograms, log probability plots, and decile analysis to determine whether to cap various elements for each estimation domain independently. SLR notes that some domains exhibited low metal risk and were not capped.

Examples of the capping analysis are shown in Figure 14-8 to Figure 14-11 for various mineralized domains for Tom.

Table 14-7 to Table 14-12 summarize the uncapped and capped assay statistics for the Tom deposit.

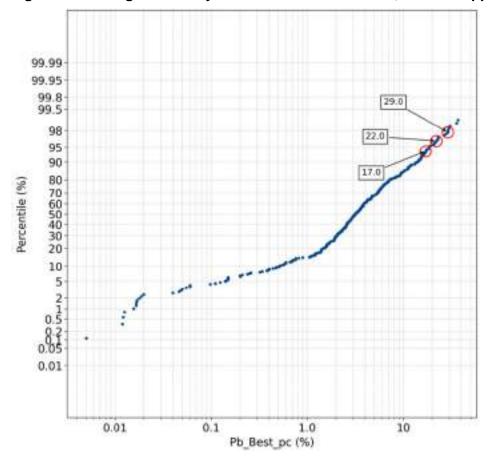
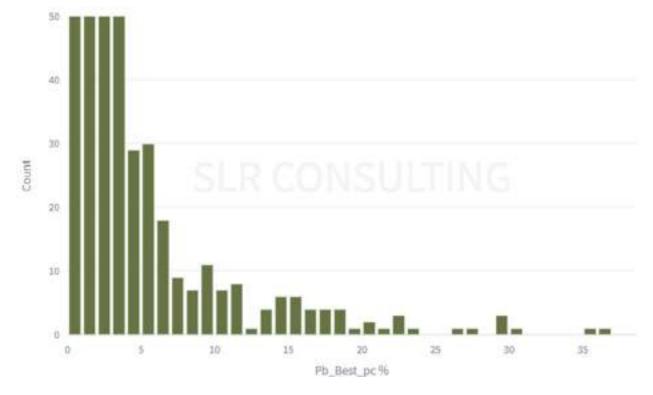
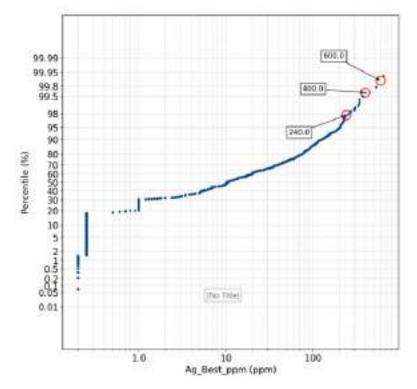
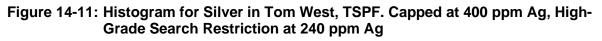


Figure 14-8: Log Probability Plot for Lead in Tom East, TELW. Capped at 22% Pb

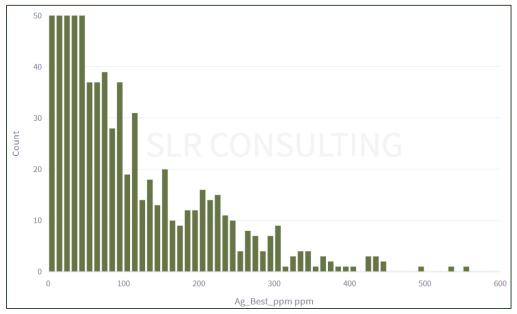

Figure 14-9: Histogram for Lead in Tom East, TELW. Capped at 22% Pb

Figure 14-10: Log Probability Plot for Silver in Tom West, TSPF. Capped at 400 ppm Ag, High-Grade Search Restriction at 240 ppm Ag

Area	Domain	Count	Cap (% Zn)	Number Capped	Mean (% Zn)	Capped Mean (% Zn)	Max (% Zn)	Capped Max. (% Zn)	CV1	Capped CV	Metal Loss (%)
Tom West	TSBF2	25	N/A	N/A	5.44	N/A	11	N/A	0.5	N/A	N/A
	TSBF TSGF TSPF	2348	N/A	N/A	6	N/A	33.69	N/A	0.56	N/A	N/A
	TSSX	352	N/A	N/A	9.44	N/A	35.3	N/A	0.78	N/A	N/A
	TSFM	481	11	3	1.87	1.84	19.36	11	1.23	1.16	1.5
Tom East	TELA	13	20	3	4.39	4.09	16.1	10	1.25	1.2	6.9
	TELB	20	20	6	17.79	17.11	38.6	20	0.58	0.53	3.8
	TESE	24	5	6	5.62	2.53	20.24	5	1.25	0.84	55.1
	TELW	428	N/A	N/A	7.62	N/A	27.44	N/A	0.58	N/A	N/A
	TEMW	362	N/A	N/A	8.63	8.6	35.4	N/A	0.85	N/A	N/A
Tom Southeast	min_combined	167	25	4	7.11	6.92	39	25	1.02	0.97	2.6
Note:					1						

Table 14-7:	Tom, Capped Zinc Assay Statistics
-------------	-----------------------------------

1. Coefficient of variation

Area	Domain	Count	Cap (% Pb)	Number Capped	Mean (% Pb)	Capped Mean (% Pb)	Max. (% Pb)	Capped Max. (% Pb)	CV	Capped CV	Metal Loss (%)
Tom West	TSBF2	21	N/A	N/A	0.87	N/A	2.4	N/A	0.93	N/A	N/A
	TSBF TSGF	1658	12	1	1.13	1.11	43	12	1.39	1.1	1.7
	TSGF	694	22	4	4.28	4.17	65.4	22	1.12	0.95	2.5
	TSSX	352	34	6	10.34	10.26	41.7	34	0.76	0.74	0.7
	TSFM	481	12	3	1.44	1.44	18.48	12	1.52	1.44	1.7
Tom East	TELA	13	12	4	13.88	6.19	49.6	12	1.19	0.8	55.4
	TELB	20	14	6	12.05	8.34	38.1	14	0.89	0.59	30.8
	TESE	24	25	1	8.37	7.92	35.8	25	1.11	1.03	5.4
	TELW	428	22	11	5.14	4.97	37	22	1.14	1.04	3.3
	TEMW	367	45	4	11.13	11.04	64.6	45	1.06	1.04	0.8
Tom Southeast	min_combined	167	25	3	4.47	4.23	41.1	25	1.6	1.46	5.3

 Table 14-8:
 Tom, Capped Lead Assay Statistics

Area	Domain	Count	Cap (Ag g/t)	Number Capped	Mean (Ag g/t)	Capped Mean (Ag g/t)	Max. (Ag g/t)	Capped Max. (Ag g/t)	CV	Capped CV	Metal Loss (%)
Tom West	TSBF2	21	N/A	N/A	0.87	N/A	2.4	N/A	0.93	N/A	N/A
	TSBF TSGF	1640	100	2	2.93	2.8	219.43	100	3.17	2.41	4.6
	TSPF	694	400	2	42.19	41.64	650.3	400	1.7	1.63	1.3
	TSSX	351	450	4	144.77	142.68	810.8	450	0.82	0.78	1.4
	TSFM	481	110	2	12.77	12.62	150.2	110	155	1.5	1.2
Tom East	TELA	13	N/A	N/A	155.58	N/A	530.7	N/A	1.14	N/A	N/A
	TELB	20	N/A	N/A	215.18	N/A	566.5	N/A	0.77	N/A	N/A
	TESE	24	280	2	108.08	98.72	453.9	280	1.14	1.03	8.7
	TELW	430	285	11	63.35	59.61	596.9	285	1.4	1.24	5.9
	TEMW	368	600	4	153.02	152.13	754.29	600	1.06	1.05	0.6
Tom Southeast	min_combined	167	380	4	64.18	59.16	673	380	1.78	1.58	7.8

 Table 14-9:
 Tom, Capped Silver Assay Statistics

Area	Domain	Count	Cap (Ba %)	Number Capped	Mean (Ba %)	Capped Mean (Ba %)	Max. (Ba %)	Capped Max. (Ba %)	CV	Capped CV	Metal Loss (%)
Tom West	TSBF	510	22	8	6.57	6.44	34.63	22	0.67	0.59	1.9
	TSGF TSPF	955	N/A	N/A	28.59	N/A	48.45	N/A	0.34	N/A	N/A
	TSSX	173	N/A	N/A	7.73	N/A	44.94	N/A	1.46	N/A	N/A
	TSFM	279	30	3	6.62	6.56	39.14	30	0.91	0.88	0.9
Tom East	TELB	279	30	3	6.62	6.56	39.14	30	0.91	0.88	0.9
	TELW	263	N/A	N/A	12.86	N/A	43.83	N/A	0.87	N/A	N/A
	TEMW	102	N/A	N/A	8.57	N/A	39.4	N/A	1.19	N/A	N/A
Tom Southeast	min_combined	125	12	12	4.66	2.78	40.3	12	1.97	1.32	40.3

 Table 14-10:
 Tom, Capped Barium Assay Statistics

Area	Domain	Count	Cap (Ge g/t)	Number Capped	Mean (Ge g/t)	Capped Mean (Ge g/t)	Max. (Ge g/t)	Capped Max. (Ge g/t)	CV	Capped CV	Metal Loss
Tom West	TSBF TSGF TSPF	821	40	32	8.34	7.68	113.00	40	1.19	0.85	8.0
	TSSX	140	36	26	15.50	13.70	62.00	36	0.82	0.61	15.5
	TSFM	106	10	3	3.94	3.79	18.00	10	0.77	0.66	3.8
Tom East	TELB	16	N/A	N/A	14.50	N/A	32.00	N/A	0.45	N/A	N/A
	TELW	250	40	13	10.78	10.35	58.00	40	0.76	0.65	4
	TEMW	89	38	22	15.66	12.53	70.00	38	1.01	0.77	20.0
Tom Southeast	min_combined	60	32	11	16.55	13.35	79.00	32	0.86	0.49	19.3

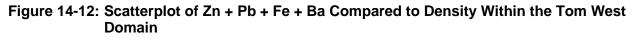
Table 14-11: Tom, Capped Germanium Assay Statistics

Area	Domain	Count	Cap (Ga g/t)	Number Capped	Mean (Ga g/t)	Capped Mean (Ga g/t)	Max. (Ga g/t)	Capped Max. (Ga g/t)	CV	Capped CV	Metal Loss (%)
Tom West	TSBF TSGF TSPF	854	20	19	7.05	6.95	32.00	20	0.65	0.61	1.4
	TSSX	145	27	15	10.34	9.66	40.00	20	0.74	0.62	6.6
	TSFM	142	17	5	8.33	8.26	20.00	17	0.55	0.54	0.8
Tom East	TELB	20	N/A	N/A	13.15	N/A	29.00	N/A	0.59	N/A	N/A
	TELW	263	21	12	7.58	7.39	35.00	21	0.64	0.57	2.5
	TEMW	102	18	17	9.37	8.58	32.00	18	0.72	0.6	17
Tom Southeast	min_combined	72	20	6	9.36	8.6	32.00	20	0.67	0.5	8.1

Table 14-12: Tom, Capped Gallium Assay Statistics

In general, many of the larger metal loss percentages are the result of capping a small number of relatively high values within a domain containing few samples, such as TELA or TELB. Capping levels should be continually reviewed for all commodities as new drilling information becomes available and more robust populations are developed for a given sub-domain.

14.3.4 Density


A total of 2,560 density measurements were collected within the mineralized domains at Tom with densities ranging from 1.61 g/cm³ to 6.42 g/cm³. Multiple regression calculations were analyzed; for all the data combined, by area and by the individual domains per area. When the data was split by individual domains, lower errors were calculated, therefore, a separate regression was used for each domain.

The regressions use the sum of Zn, Pb, Fe, and Ba compared to measured density as they had the lowest mean squared error. Outliers were removed from the data to prevent skewed results, and when required, the regression equations were split to capture multiple populations. When available, including data for sulphur significantly improved the regression analysis results, however, limited sulphur assays prevented its use in the regression equation.

A lower limit for regressed values at Tom was applied at 2.58 g/cm³.

An example scatter plot for Tom West used to calculate the regression equation is shown in Figure 14-12 and the regression equations per domain are outlined in Table 14-13. Table 14-14 shows the mean measured density values for each domain at the Tom deposit.

The regressed density values were validated against measured density by performing random checks using low-, medium-, and high-grade samples to ensure the regressed formulas were calculating density appropriately.

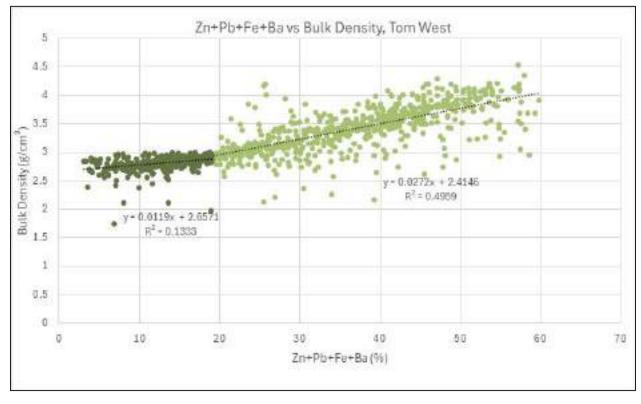


 Table 14-13:
 Tom Density Regression Equations

Area	Domains	Regression Equation	Mean Squared Error
Tom West	TSBF	if x < 25 then y = 0.0016 + 2.6208	0.76%
		if x > 25 then y = 0.029 + 2.2966	1.38%
	TSGF	y = 0.324 + 2.2223	2.84%
	TSPF	y = 0.0325 + 2.2075	6.51 %
	TSSX	y = 0.0159 + 2.8963	10.16%
	TSFM	y = 0.024 + 2.5408	2.06 %
Tom Southeast	min_combined	y = 0.0316 + 2.4597	2.01 %
Tom East	TELW	if x < 32 then y = 0.0138 + 2.6644	6.57%
		if x > 32 then y = 0.0283 + 2.2894	5.38%
	TEMW	y = 0.0307 + 2.4245	4.60%
	TELA, TELB, TESE	if x < 32 then y = 0.0118 + 2.8095	10.72%
		if x > 32 then y = 0.0373 + 2.9414	7.15%

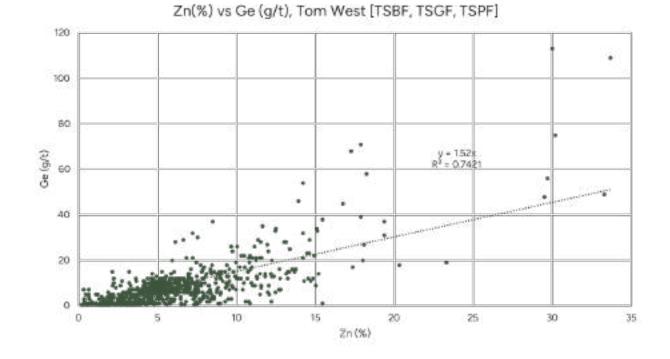
Area	Domains	Mean Density (g/cm ³)
Tom West	TSBF2	2.82
	TSBF	2.89
	TSGF	3.41
	TSPF	3.56
	TSSX	3.49
	TSFM	2.95
Tom Southeast	min_combined	3.15
Tom East	TELW	3.09
	TEMW	3.48
	TESE	3.74
	TELA	4.03
	TELB	3.41

Table 14-14: Tom Mean Measured Density Values

For the final density variables in Tom, measured values were prioritized, followed by regressed values (Table 14-13). The values reported in Table 14-14 were used for all remaining intervals that did not have the required assays to calculate a regressed value.

In total, 608 density values were regressed and 1,501 density values were assigned mean values within the mineralized domains at Tom.

14.3.5 Germanium and Gallium


A total of 1,490 germanium and 1,624 gallium samples were collected within the mineralized domains at the Tom deposit where germanium values range from 0.5 g/t to 113 g/t and gallium values range from 0.5 g/t to 40 g/t. Due to this limited assay coverage for germanium and gallium, regressions with zinc or zinc and aluminum (where possible) were used where no gallium or germanium assay data were available. Multiple regression calculations were analyzed by combined and by individual domains. The regressions for germanium compare against zinc only whereas the regressions for gallium compare against the sum of zinc and aluminum.

An example germanium scatterplot for Tom West used to calculate the regression equation is shown in Figure 14-13. The regression equations per domain for both germanium and gallium are outlined in Table 14-15. Table 14-16 and Table 14-17 show the assay statistics of the regressed germanium and gallium values, respectively, for each domain at the Tom deposit.

The regressed germanium and gallium values were validated against measured germanium and gallium by performing random checks using low-, medium- and high-grade samples to ensure the regressed formulas were calculating germanium and gallium appropriately.

For the final germanium and gallium variables used to create composites for the Tom deposit, measured values (Table 14-11 and Table 14-12) were prioritized, followed by regressed values. The values reported in Table 14-16 and Table 14-17 provide the assay statistics for regressed germanium and gallium, respectively, excluding measured values.

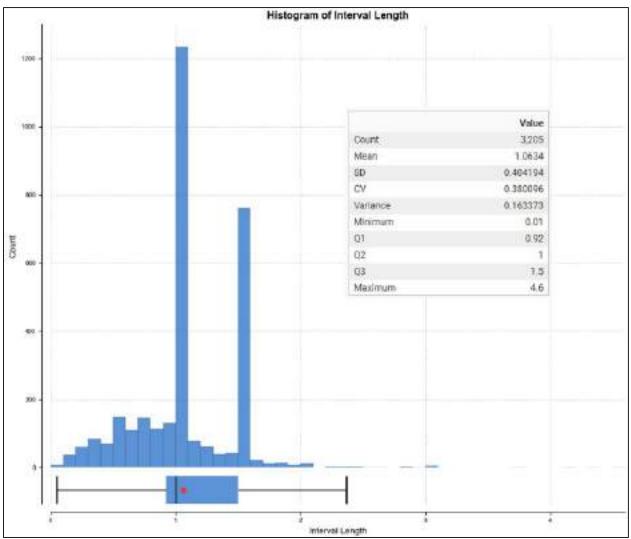
Figure 14-13: Scatterplot of Zinc Compared to Germanium Within Tom West Domain

Area	Area Element Domains		Regression Equation	R-squared Value	
Tom West	Ge	TSBF_TSGF_TSPF	y = 1.52x	0.7421	
		TSSX	y = 1.328x	0.7881	
		TSFM	y = 0.811x	0.461	
	Ga	TSBF_TSGF_TSPF	y = 0.892x	0.7964	
		TSSX	y = 0.825x	0.8355	
		TSFM	y = 1.529x	0.7161	
Tom Southeast	Ge	min_combined	y = 1.543x	0.8344	
	Ga	min_combined	y = 0.776x	0.7763	
Tom East	Ge	TELW	y = 1.184x	0.7497	
		TEMW	y = 1.694x	0.8429	
	Ga	TELW	y = 0.687x	0.6355	
		TEMW	y = 0.754x	0.6221	

AREA	Domain	Count	Length (m)	Mean (Ge g/t)	CV ¹	Min (Ge g/t)	Max (Ge g/t)
Tom West	TSB2	25	25	7.78	0.51	1.22	15.74
	TSBF	1,526	1,711	8.99	0.46	0.01	31.63
	TSGF						
	TSPF						
	TSSX	212	197	10.99	0.73	0.01	37.84
	TSFM	375	395	1.33	1.14	0.00	8.17
Tom East	TELA	13	12	5.21	1.36	0.01	19.85
	TELB	4	5	2.43	2.64	0.01	14.95
	TESE	24	20	8.22	1.11	0.02	24.95
	TELW	181	225	7.65	0.66	0.01	28.76
	TEMW	271	274	14.66	0.82	0.01	59.98
Tom Southeast	min_combined	12	13	2.50	0.00	2.50	2.50

Table 14-16:	Tom, Regressed Germanium Assay Statistics
--------------	---

Table 14-17:	Tom, Regressed Gallium Assay Statistics
--------------	---


Area	Domain	Count	Length (m)	Mean (Ge g/t)	CV ¹	Min (Ge g/t)	Max (Ge g/t)
Tom West	TSB2	25	25	4.88	0.51	0.76	9.88
	TSBF TSGF TSPF	1,493	1,680	5.28	0.46	0.01	18.57
	TSSX	207	194	6.89	0.72	0.00	23.51
	TSFM	339	357	2.78	1.04	0.01	15.42
Tom East	TELA	13	12	2.96	1.36	0.00	11.28
	TELB	0	0	0.00	0.00	0.00	0.00
	TESE	24	20	4.67	1.11	0.01	14.18
	TELW	168	210	4.76	0.59	0.00	16.69
	TEMW	262	265	5.57	0.79	0.00	22.02
Tom Southeast	min_combined	95	92	4.95	0.96	0.02	17.09

14.3.6 Compositing

The dominant sampling length at Tom was found to be bimodal with most samples being at one metre and 1.53 m (Figure 14-14). The compositing approach was to use the smallest composite possible that also resulted in splitting less than 5% of the samples. As such, the capped assay samples at Tom were composited to 1.53 m and broken at domain boundaries. Further cumulative frequency analysis supported using a 1.53 m composite value with an average frequency of 93% for Tom. Any composites that were less than 0.25 m in length were added to the previous interval. Zn, Pb, Ag, and Ba composites were density weighted.

Raw interval length statistics versus composite length statistics by area are presented in Table 14-18. The statistical values indicate that there is a less than 5% difference between the total raw interval lengths versus the composited lengths for each area. Table 14-19 to Table 14-24 present the capped composite statistics for zinc, lead, silver, barium, germanium and gallium respectively, by individual domain. zinc, lead, silver, barium, germanium and gallium composites were density weighted for estimation.

Area	Total Raw Assay Length (m)	Total Composite Length (m)	% Difference
Tom West	2,874	3,014	4.6
Tom Southeast	155	158	1.9
Tom East	820	812	1.0

Area	Domain	Count	Length (m)	Mean Grade Zn (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
Tom West	TSBF2	17	25.0	5.44	0.42	1.86	4.08	5.36	8.03	8.66
	TSBF, TSGF, TSPF	1,756	2,627.6	6.02	0.49	0.01	4.37	5.51	7.20	31.28
	TSSX	270	380.5	9.93	0.68	0.01	4.88	9.14	14.21	29.35
	TSFM	383	535.7	1.83	1.05	0.01	0.34	1.28	2.46	11.25
Tom Southeast	min_combined	110	158.1	6.86	0.84	0.01	1.74	6.07	9.83	25.00
Tom East	TELA	12	16.7	2.74	1.13	0.01	0.05	2.43	6.97	7.00
	TELB	14	20.9	13.96	0.54	0.01	10.32	16.86	18.95	20.00
	TELW	311	459.1	7.49	0.55	0.01	5.05	6.94	9.46	24.30
	TEMW	251	366.9	8.68	0.72	0.01	3.80	8.05	12.11	30.26
	TESE	17	21.9	3.03	0.57	0.04	1.24	3.35	4.68	5.00
Note: 1. IQR – Interqua	rtile Range							·		

Area	Domain	Count	Length (m)	Mean Grade Pb (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
Tom West	TSBF2	17	25.0	0.14	0.64	0.05	0.09	0.10	0.17	0.43
	TSBF, TSGF	1,255	1,865.0	1.14	1.02	0.00	0.28	0.91	1.58	10.89
	TSPF	523	761.9	4.15	0.88	0.14	1.60	2.74	5.70	22.00
	TSSX	270	380.5	10.45	0.68	0.01	4.98	8.90	14.29	33.39
	TSFM	383	535.7	1.38	1.33	0.01	0.29	0.80	1.64	12.20
Tom Southeast	min_x	110	158.1	3.41	1.37	0.01	0.37	1.58	4.43	21.19
Tom East	TELA	12	16.7	5.86	0.88	0.82	1.20	3.30	12.00	12.00
	TELB	14	20.9	7.92	0.56	0.79	4.18	9.04	12.26	14.00
	TELW	310	457.6	4.62	0.88	0.01	1.98	3.22	6.07	22.00
	TEMW	255	373.0	11.44	0.92	0.02	2.95	8.60	16.50	44.89
	TESE	17	21.9	8.93	0.87	0.44	2.82	6.85	14.55	23.80

Area	Domain	Count	Length (m)	Mean Grade Ag (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
Tom West	TSBF2	15	21.9	0.91	0.79	0.25	0.25	0.52	1.70	2.10
	TSBF, TSGF	1,250	1,857.5	2.94	2.40	0.20	0.42	1.00	2.76	100.00
	TSPF	523	761.9	40.23	1.57	0.20	1.00	11.18	54.77	400.00
	TSSX	269	378.9	145.55	0.70	0.25	68.45	124.90	210.17	441.79
	TSFM	383	535.7	12.64	1.39	0.25	1.91	6.56	16.00	110.00
Tom Southeast	min_combined	110	158.1	49.03	1.64	0.34	2.81	9.20	48.91	334.60
Tom East	TELA	12	16.7	167.11	1.25	12.30	15.76	30.20	410.13	526.40
	TELB	14	20.9	200.75	0.70	15.00	93.83	186.73	264.15	501.92
	TELW	312	460.7	53.66	1.17	0.25	13.34	30.86	64.60	285.00
	TEMW	254	372.7	157.29	0.90	1.64	35.99	119.68	230.70	598.67
	TESE	17	21.9	108.81	0.82	1.79	40.50	94.04	186.15	266.93

Table 14-22:	Tom Barium Composite Statistics
--------------	---------------------------------

Area	Domain	Count	Length (m)	Mean Grade Ba (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
Tom West	TSBF	368	537.6	6.24	0.54	0.16	4.22	5.78	7.62	22.00
	TSGF TSPF	638	952.1	28.48	0.32	0.27	23.48	29.65	35.28	47.12
	TSSX	124	181.6	7.36	1.36	0.02	0.36	2.38	11.30	40.93
	TSFM	207	293.9	6.45	0.86	0.04	1.44	6.48	9.24	27.16
Tom Southeast	min_combined	91	134.5	3.33	1.16	0.04	0.26	2.35	4.40	12.00
Tom East	TELB	14	20.9	0.17	0.65	0.05	0.11	0.14	0.21	0.43
	TELW	161	241.9	13.49	0.79	0.81	4.73	9.64	20.73	42.41
	TEMW	62	91.9	9.19	1.08	0.31	2.15	6.33	9.28	37.20

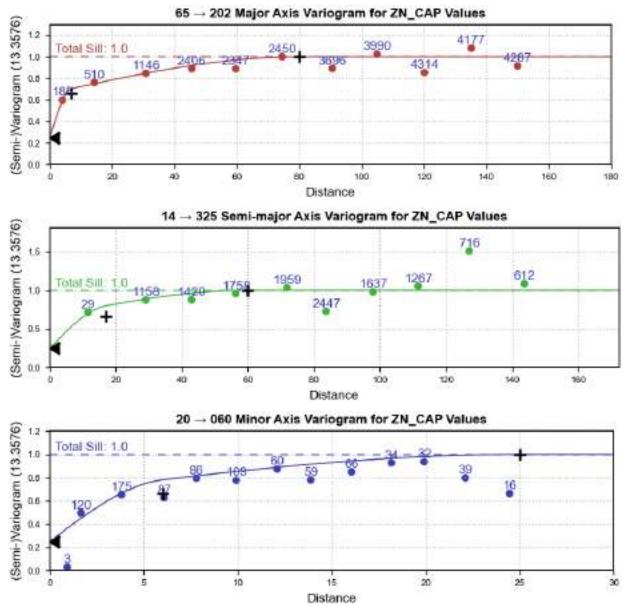
Area	Domain	Count	Length (m)	Mean Grade Ge (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
Tom West	TSBF2	17	25	7.78	0.42	2.66	5.84	7.67	11.49	12.38
	TSBF TSGF TSPF	1,756	2,628	8.67	0.58	0.01	6.00	8.02	10.64	40.00
	TSSX	270	380	13.18	0.66	0.01	6.47	12.00	19.12	36.00
	TSFM	383	536	1.89	0.98	0.00	0.42	1.31	2.92	10.00
Tom Southeast	min_combined	110	158	10.61	0.81	0.01	3.50	9.04	14.44	32.00
Tom East	TELA	12	17	5.39	1.30	0.01	0.06	3.00	15.59	16.53
	TELB	11	17	14.48	0.41	6.95	10.00	13.69	17.58	27.03
	TELW	305	450	9.57	0.64	0.01	5.75	8.29	11.40	39.40
	TEMW	245	359	14.54	0.68	0.03	6.30	13.64	21.29	38.00
	TESE	17	22	8.03	1.03	0.05	1.53	4.14	10.70	24.83

Table 14-23: Tom Germanium Composite Statistics

Table 14-24:	Tom Gallium Composite Statistics
--------------	----------------------------------

Area	Domain	Count	Length (g/t)	Mean Grade Ga (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
Tom West	TSBF2	17	25	4.88	0.42	1.67	3.66	4.81	7.21	7.77
	TSBF TSGF TSPF	1,756	2,628	5.90	0.52	0.01	3.89	5.06	7.38	20.00
	TSSX	270	380	8.59	0.69	0.00	4.42	7.08	11.79	27.00
	TSFM	383	536	4.38	0.94	0.01	1.27	2.98	6.43	17.00
Tom Southeast	min_combined	110	158	6.43	0.71	0.02	2.50	6.10	9.25	20.00
Tom East	TELA	12	17	3.06	1.30	0.00	0.03	1.71	8.86	9.39
	TELB	14	21	12.55	0.57	2.50	4.61	14.29	17.79	23.34
	TELW	311	459	5.98	0.59	0.00	3.64	5.29	7.39	21.00
	TEMW	250	365	6.36	0.65	0.01	3.42	5.72	8.54	18.00
	TESE	17	22	4.57	1.03	0.03	0.87	2.35	6.08	14.11

14.3.7 Trend Analysis


14.3.7.1 Variography

In addition to the trend analysis and contouring described in Section 14.3.1.1, SLR prepared variograms for Zn, Pb, and Ag across selected domains at Tom. Variograms for Ge and Ga were investigated, however, the analysis did not yield meaningful results due to a lack of data density. The domains selected represent the best supported mineralization based on drill hole spacing and continuity. These include the sub-vertical sections through Tom West for each estimation domain and Tom East's massive sulphide and laminated sulphide domains. Examples of the modelled variograms for Tom are provided in Figure 14-15 to Figure 14-17.

All variables were estimated using inverse distance squared (ID²), and as such, variogram ranges and anisotropy were not applied during estimation as they would be applied for other estimation methods such as ordinary kriging. Variogram ranges were used to provide a guide for search ellipse dimensions and ranges. Variogram ranges were also considered as one of the resource classification criteria.

Table 14-25 and Table 14-26 summarize the variograms for Tom West and Tom East.

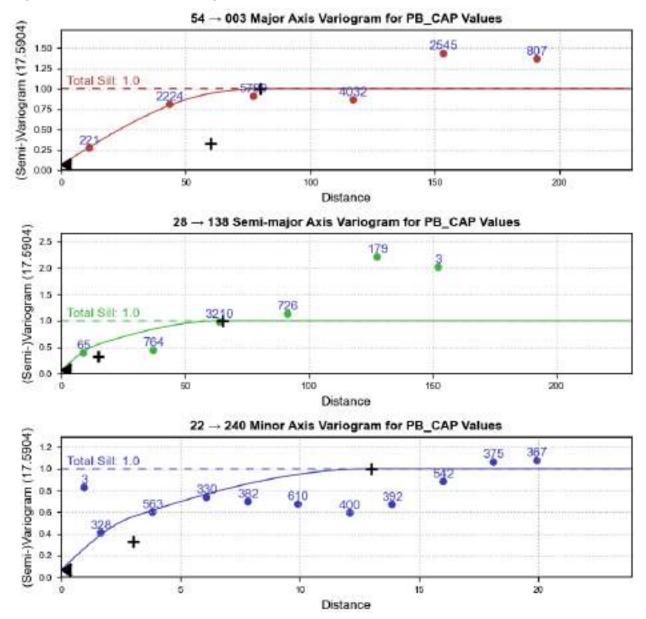


Figure 14-16: Modelled Variogram for Lead in Tom East TELW Domain

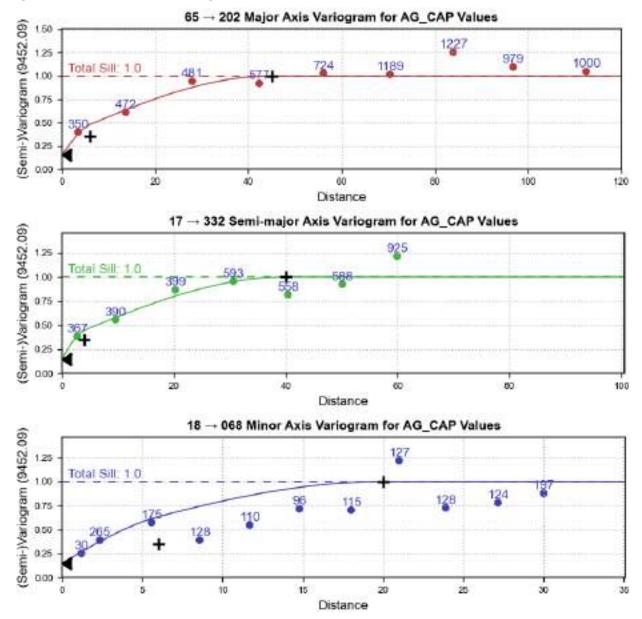


Figure 14-17: Modelled Variogram for Silver in Tom West Sub-Vertical TSSX

	Area				Tom West			
Variable Zn								
	Domain	TSBF+TSGF+TSPF Sub-horizontal	TSFM Sub- horizontal	TSSX Sub- horizontal	TSBF+TSGF+TSPF Sub-vertical	TSFM Sub-vertical	TSSX Sub-vertical	
Direction	Dip	62	20	75	70	65	68	
	Dip Azimuth	245	240	245	240	140	240	
	Pitch	0	10	55	75	100	98	
	Variance	4.93	4.47	43.78	13.36	3.06	44.80	
	Nugget	1.23	0.54	4.38	3.34	0.31	0.45	
	Normalized Nugget	0.25	0.12	0.1	0.25	0.1	0.01	
Structure 1	Sill	1.58	1.34	19.70	5.48	0.61	26.88	
	Normalized sill	0.32	0.30	0.45	0.41	0.20	0.60	
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	
	Alpha	0	0	0	0	0	0	
	Major	52	121	10	7	18	45	
	Semi-major	38	17	15	17	65	5	
	Minor	15	10	2	6	17	7	
Structure 2	Sill	2.12	2.59	19.70	4.54	2.15	17.47	
	Normalized sill	0.43	0.58	0.45	0.34	0.70	0.39	
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	
	Alpha	0	0	0	0	0	0	
	Major	230	200	115	80	50	45	
	Semi-major	200	27	27	60	120	38	
	Minor	25	25	18	25	25	10	

Table 14-25: Tom West Zn, Pb, and Ag Variograms

	Area				Tom Wes	t			
Variable Pb									
	Domain	TSBF+TSGF Sub-horizontal	TSPF Sub- horizontal	TSFM Sub- horizontal	TSSX Sub-horizontal	TSBF+TSGF Sub-vertical	TSPF Sub-vertical	TSFM Sub-vertical	TSSX Sub- vertical
Direction	Dip	20	20	20	20	65	65	65	65
	Dip Azimuth	310	310	310	310	140	140	140	140
	Pitch	108	108	108	108	125	170	165	170
	Variance	0.79	7.37	3.97	21.10	2.59	18.61	2.97	54.77
	Nugget	0.08	0.74	0.60	5.27	0.03	0.20	0.03	0.55
	Normalized Nugget	0.10	0.10	0.15	0.25	0.01	0.01	0.01	0.01
Structure 1	Sill	0.31	2.39	1.09	3.66	0.08	0.55	0.09	0.57
	Normalized sill	0.40	0.32	0.27	0.17	0.03	0.03	0.03	0.01
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
	Alpha	0	0	0	0	0	0	0	0
	Major	120	92	120	120	6	6	6	6
	Semi-major	4	17	19	17	200	32	200	200
	Minor	11	10	7	5	25	25	25	25
Structure 2	Sill	0.39	4.25	2.29	12.16	2.49	17.84	2.85	54.22
	Normalized sill	0.50	0.58	0.58	0.58	0.96	0.96	0.96	0.99
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
	Alpha								
	Major	155	120	200	200	20	20	20	15
	Semi-major	16	27	27	27	200	80	200	55
	Minor	50	18	25	15	105	105	105	65

	Area				Tom Wes	t			
Variable Ag		•							
	Domain	TSBF+TSGF Sub-horizontal	TSPF Sub- horizontal	TSFM Sub- horizontal	TSSX Sub-horizontal	TSBF+TSGF Sub-vertical	TSPF Sub-vertical	TSFM Sub-vertical	TSFM Sub- vertical
Direction	Dip	20	20	65	20	65	65	65	72
	Dip Azimuth	310	310	248	310	140	140	140	248
	Pitch	108	108	166	108	170	170	170	72
	Variance	35.90	1066.26	262.30	11783.69	97.48	6411.29	345.18	9452.09
	Nugget	0.36	21.33	3.58	493.23	1.02	67.24	3.62	1417.81
	Normalized Nugget	0.01	0.02	0.01	0.04	0.01	0.01	0.01	0.15
Structure 1	Sill	14.85	430.41	12.33	4499.12	2.90	191.06	10.29	1890.42
	Normalized sill	0.41	0.40	0.05	0.38	0.03	0.03	0.03	0.20
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
	Alpha	0	0	0	0	0	0	0	0
	Major	120	120	50	120	6	6	6	6
	Semi-major	17	17	17	17	200	200	200	4
	Minor	5	10	5	5	25	24	24	6
Structure 2	Sill	20.69	614.49	245.33	6790.94	93.46	6214.87	330.96	6146.58
	Normalized sill	0.58	0.58	0.94	0.58	0.96	0.97	0.96	0.65
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
	Alpha	0	0	0	0	0	0	0	0
	Major	155	150	65	200	20	10	20	45
	Semi-major	27	27	40	27	200	37	200	40
	Minor	8	14	25	25	110	55	106	20

	Area				Tom East		
	Variable	Zn		Pb		Ag	
	Domain	TELW	TEMW	TELW	TEMW	TELW	TEMW
Direction	Dip	70	70	68	66	72	70
	Dip Azimuth	60	60	60	55	65	60
	Pitch	50	50	60	35	35	120
	Variance	18.18	39.65	17.59	110.86	4044.52	19946.67
	Nugget	3.64	7.93	1.23	5.54	80.89	1196.80
	Normalized Nugget	0.20	0.20	0.07	0.05	0.02	0.06
Structure 1	Sill	4.61	9.88	4.57	0.27	1153.44	8158.19
	Normalized sill	0.25	0.25	0.26	0.00	0.29	0.41
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
	Alpha	0	0	0	0		
	Major	20	35	60	18	50	6
	Semi-major	60	18	15	23	6	50
	Minor	7	4	3	7	8	8
Structure 2	Sill	9.93	21.84	11.79	105.04	2810.19	10771.20
	Normalized sill	0.55	0.55	0.67	0.95	0.69	0.54
	Structure	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
	Alpha	0	0	0	0	0	0
	Major	70	75	80	67	60	80
	Semi-major	65	50	65	62	35	75
	Minor	10	6	13	10	20	10

Table 14-26: Tom East Zn, Pb, and Ag Variograms

14.3.7.2 Grade Contouring

Grade contouring within each domain was carried out in Tom. This allowed customization of the directional anisotropy of the mineralization on a per domain basis. Averaged trends between the different elements and density were used to assign a single trend across all variables to prevent contrasting anisotropies being applied to density.

The outputs of the grade contouring were used to aid initial variogram and search ellipse orientations and to help validate the block model.

14.3.8 Search Strategy and Grade Interpolation Parameters

Grades and density were estimated into parent blocks using a multi-pass ID² approach and composite selection plans with high-grade restrictions as outlined in Table 14-27 to Table 14-29, and Table 14-30 to Table 14-32 for Tom East. Search ellipses for grade and density interpolation were oriented using dynamic anisotropy with the longest axis parallel to the mineralization.

The same search strategy and interpolation parameters were applied for Zn, Pb, Ag, Ba, and density. Germanium used the same search strategy and interpolation parameters as zinc due to the strong correlation observed between these two elements. SLR applied a similar search strategy for gallium but used an isotropic search ellipse due to the poor correlation observed between gallium and zinc.

Post-estimation calculations were used to determine the final grades for all elements: Zn, Pb, Ag, Ba, Ge, and Ga.

High-grade outlier restrictions were applied when over-extrapolation was observed at the block model validation stage. The high-grade outlier restriction clamps composites to an assigned value when they are found beyond the first pass search distance and are to be used in the estimate (Table 14-29 Tom West and Southeast and Table 14-32 for Tom East).

14.3.8.1 Tom West and Southeast

Domain	Method	1 st Pass (m)			2 nd Pass (m)			3 rd Pass (m)			4 th Pass (m)		
		x-axis	y-axis	z-axis									
All	ID ²	60	40	10	120	80	20	240	160	40	480	320	80

Table 14-27:	Tom West and Southeast Search Ellipse Ranges
--------------	--

Domain	1 st Pass			2 nd Pass			3 rd Pass			4 th Pass		
	Min	Max	Max per DDH	Min	Max	Max per DDH	Min Max		Max per DDH	Min	Max	Max per DDH
All	8	16	4	8	16	4	1	16	4	1	16	4

Table 14-29: Tom West and Southeast High-Grade Search Restriction

Domain	Zn	Pb	Ag
	(%)	(%)	(g/t)
TSBF, TSGF, TSPF	20	-	-
TSBF, TSGF	-	1	-
TSPF	-	-	240
TSSX	20	-	-
TSFM	-	-	-
min_combined	20	11	140

14.3.8.2 Tom East

Table 14-30: Tom East Search Ellipse Ranges

Domain	Method	1st Pass (m)		2nd Pass (m)		3rd Pass (m)			4th Pass (m)				
		x-axis	y-axis	z-axis	x-axis	y-axis	z-axis	x-axis	y-axis	z-axis	x-axis	y-axis	z-axis
All	ID ²	60	45	7	120	90	14	240	180	28	480	320	56

Domain		1 st Pass	5	:	2 nd Pass	5		3 rd Pass	;		4 th Pass	;
	Min	Мах	Max per DDH	Min	Max	Max per DDH	Min	Мах	Max per DDH	Min	Max	Max per DDH
All	8	16	4	8	16	4	1	16	4	1	16	4

Table 14-32:	Tom East High-Grade Search Restriction
	Tom Last myn-Grade Search Nesthelion

Domain	Zn (%)	Pb (%)	Ag (g/t)
TEMW	28	-	300
TELW	18	-	-
TESE	-	10	105

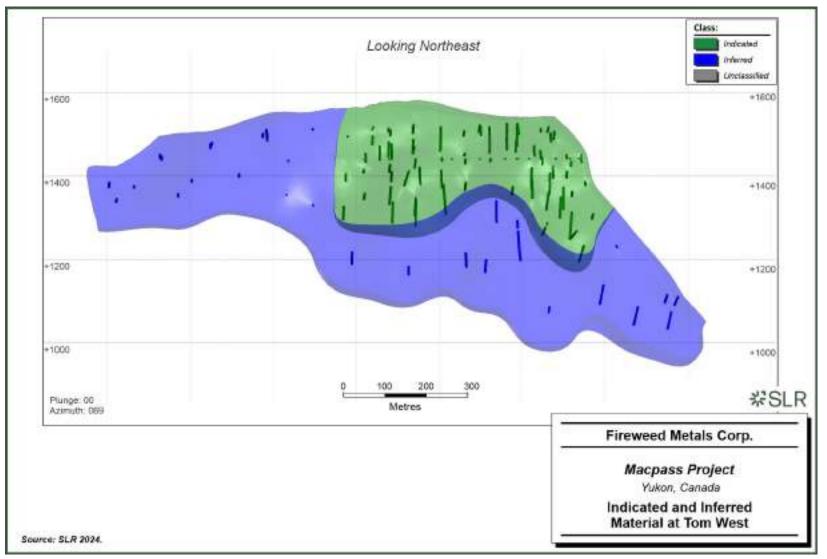
14.3.9 Block Models

A single block model was created for the Tom West, Tom Southeast, and Tom East. Block model construction and estimation were completed using Leapfrog Edge 2023.2 software and the dimensions are presented in Table 14-33.

For Tom, the block models all have parent block sizes of 5 m x 5 m x 5 m and are not rotated. The models are each sub-blocked at wireframe contacts including mineralization, overburden, topography, and classification wireframes. The SLR QP considers the block model sizes to be appropriate for the deposit geometry and proposed mining methods.

SLR regularized each block model to a 5 m x 5 m x 5 m block size for pit optimization and mining sensitivity analysis. For final open pit resource reporting for Tom, the sub-blocked version of the model was used. The SLR QP considers the sub-blocked model more appropriate for reporting due to the deposit type and style of mineralization.

	Х	Y	Z
Base Point	441,290	7,002,700	2,100
Boundary Size (m)	1,650	2,630	1,295
Parent Block Size (m)	5	5	5
Min. Sub-block Size (m)	0.625	0.625	0.625


Table 14-33: Tom Block Model

14.3.10 Classification

Definitions for resource categories used are consistent with those defined by CIM (2014) and adopted by NI 43-101. In the CIM classification, a Mineral Resource is defined as "a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction". Mineral Resources are classified into Measured, Indicated, and Inferred categories.

At Tom West, Indicated and Inferred Mineral Resources have been defined where drill hole spacings of up to approximately 90 m (100% of averaged variogram ranges across the Tom West estimation domains) and 180 m (200% of averaged variogram ranges) were achieved, respectively. The areas were modified to consider geological and grade continuity, mineralization thickness (approximately 10 m to 50 m thick for Indicated material) and the creation of cohesive class boundaries. Figure 14-18 shows the classification wireframes with the drill holes coloured by classification.

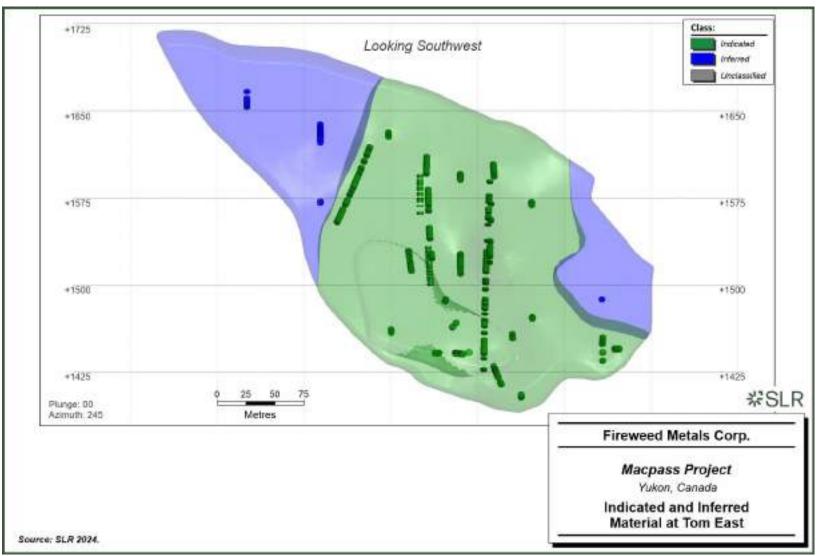

The SLR QP notes that due to the reduction in the thickness of mineralization (down to two metres thick in areas) north of 7,004,136N, tighter drill hole spacing should be considered to support Indicated Resources as drilling is carried out.

Figure 14-18: Indicated and Inferred Material at Tom West

At Tom Southeast, only Inferred Mineral Resources have been defined due to the variability in thickness (between two metres and eight metres) of the grade variance observed between drill holes.

At Tom East, Indicated and Inferred Mineral Resources have been defined where drill hole spacings of up to approximately 65 m and 130 m were achieved, respectively. The areas were modified to consider geological and grade continuity, mineralization thickness (approximately seven metres to 30 m for Indicated), and the creation of cohesive class boundaries. Figure 14-19 shows the classification wireframes with the drill holes coloured by classification for Tom East.

Figure 14-19: Indicated and Inferred Material at Tom East

14.3.11 Block Model Validation

Blocks were validated using various techniques, including:

- Statistical comparison of assay, composite, and block statistics.
- Visual inspection of composite versus block grades.
- Wireframe to block model volume confirmation.
- Swath plots comparing ID² to nearest neighbour (NN) values.

Table 14-34 summarizes the assay, composite, and block comparisons for each Tom estimation domain.

Evaluation of the accuracy of the estimate was also carried out by visually comparing the composites against the estimated block grades in plan and cross-sectional views. Examples are presented in Figure 14-20, Figure 14-21, and Figure 14-22 for Tom.

Example swath plots are presented in Figure 14-23, Figure 14-24 and Figure 14-25.

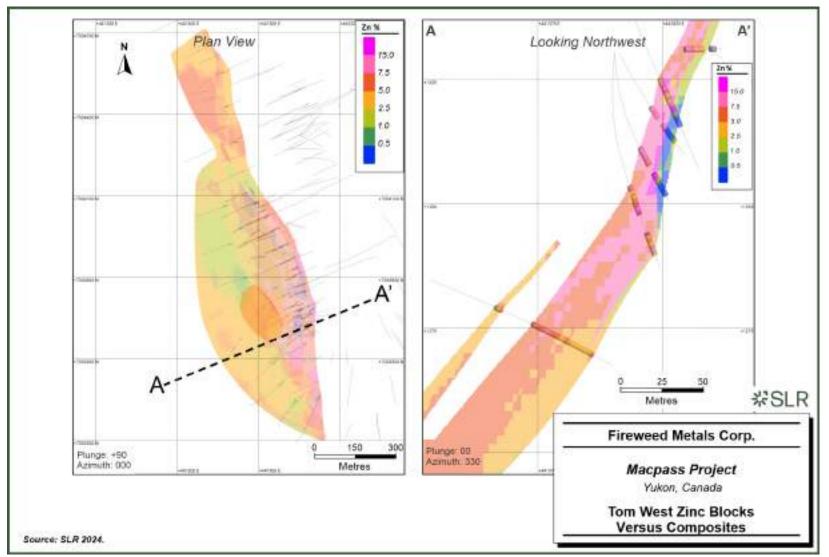

Area	Domain	Capped Assay Count	Capped Assays	Composite Count	Composites	Parent Block Count	NN	ID ²
Zn %								
Tom West	TSBF2	25	5.44	17	5.44	201,788	1.18	1.07
	TSBF, TSGF, TSPF	2,347	5.98	1756	6.02	9,335,501	4.93	5.01
	TSSX	352	9.94	270	9.93	690,796	109.94	123.48
	TSFM	481	1.80	383	1.83	2,131,804	5.11	5.25
Tom Southeast	min_combined	167	6.82	110	6.86	2,600,880	7.15	6.80
Tom East	TELA	13	2.66	12	2.74	36,061	3.89	4.43
	TELB	20	13.89	14	13.96	63,849	14.98	33.98
	TELW	431	7.45	311	7.49	285,291	7.41	5.98
	TEMW	363	8.65	251	8.68	275,194	9.66	13.77
	TESE	24	3.02	17	3.03	39,130	2.65	0.69
Pb %								
Tom West	TSBF2	25	0.14	17	0.14	201,788	0.13	0.12
	TSBF, TSGF	1,657	1.12	1255	1.14	7,789,518	0.60	0.62
	TSPF	694	4.14	523	4.15	1,545,961	3.43	3.73
	TSSX	352	10.39	270	10.45	690,796	7.66	8.46
	TSFM	481	1.36	383	1.38	690,796	7.66	8.46
Tom Southeast	min_combined	167	3.34	110	3.41	2,600,880	3.25	2.97

 Table 14-34:
 Tom Assay, Composite, and Block Comparisons

Area	Domain	Capped Assay Count	Capped Assays	Composite Count	Composites	Parent Block Count	NN	ID ²
Tom East	TELA	13	6.09	12	5.86	36,061	3.89	3.19
	TELB	20	7.76	14	7.92	63,849	14.98	14.50
	TELW	430	4.58	310	4.62	285,291	7.41	7.44
	TEMW	368	11.53	255	11.44	275,194	9.66	9.78
	TESE	24	9.02	17	8.93	39,130	2.65	2.82
Ag g/t								
Tom West	TSBF2	21	0.87	15	0.91	201,788	1.18	1.07
	TSBF, TSGF	1,639	2.76	1250	2.94	778,518	1.96	1.99
	TSPF	694	40.24	523	40.23	1,545,961	25.77	29.43
	TSSX	351	144.03	269	145.55	690,796	109.94	123.48
	TSFM	481	12.32	383	12.64	2,131,804	5.11	5.25
Tom Southeast	min_combined	167	48.09	110	49.03	2,600,880	34.32	38.29
Tom East	TELA	13	166.79	12	167.11	36,061	199.91	190.54
	TELB	20	195.08	14	200.75	63,873	144.12	173.51
	TELW	432	53.51	312	53.66	285,291	52.64	52.21
	TEMW	368	157.26	254	157.29	275,194	170.92	172.79
	TESE	24	110.55	17	108.81	39,130	73.02	80.75
Ba %								
Tom West	TSBF, TSGF	955	28.37	638	28.48	4,232,149	30.36	29.51
	TSPF	510	6.30	368	6.24	5,103,351	6.08	6.15
	TSSX	173	7.28	124	7.36	690,796	7.63	6.12
	TSFM	279	6.43	207	6.45	2,131,080	10.81	10.58
Tom Southeast	min_combined	125	3.28	91	3.33	2,600,880	3.21	2.20
Tom East	TELB	20	0.18	14	0.17	63,892	0.17	0.17
	TELW	263	13.35	161	13.49	285,291	11.55	10.90
	TEMW	101	9.88	62	9.19	275,194	6.20	6.61
Ge g/t								
Tom West	TSBF2	25	7.78	17	7.78	337,812	7.17	8.06
	TSBF, TSGF, TSPF	821	7.77	554	7.80	8,620,041	6.15	5.96
	TSSX	140	16.12	105	15.89	690,796	14.80	14.31
	TSFM	106	3.82	93	3.79	1,798,816	3.89	3.03
Tom Southeast	min_combined	60	14.83	36	14.43	135,795	14.38	9.30

Area	Domain	Capped Assay Count	Capped Assays	Composite Count	Composites	Parent Block Count	NN	ID ²
Tom East	TELA	13	5.21	12	5.39	38,840	7.39	6.48
	TELB	16	14.93	11	14.48	63,839	13.45	13.34
	TELW	250	10.88	155	10.83	285,120	9.58	9.28
	TEMW	92	13.49	57	13.12	265,868	16.30	14.72
	TESE	24	8.22	17	8.03	41,552	5.41	5.96
Ga g/t								
Tom West	TSBF2	25	4.88	17	4.88	337812	4.49	5.06
	TSBF, TSGF, TSPF	854	7.12	566	7.11	7,910,603	8.11	7.08
	TSSX	145	10.84	105	10.84	611,898	9.03	8.99
	TSFM	142	8.25	110	8.25	1,300,138	7.69	4.71
Tom Southeast	min_combined	72	8.61	43	8.65	135,795	8.92	5.32
Tom East	TELA	13	2.96	12	3.06	38,840	4.20	3.68
	TELB	20	12.68	14	12.55	63,839	13.64	11.92
	TELW	263	7.09	161	7.07	285,120	7.34	8.11
	TEMW	101	8.24	62	8.59	265,868	11.64	10.67
	TESE	24	4.67	17	4.57	41,552	3.07	3.39

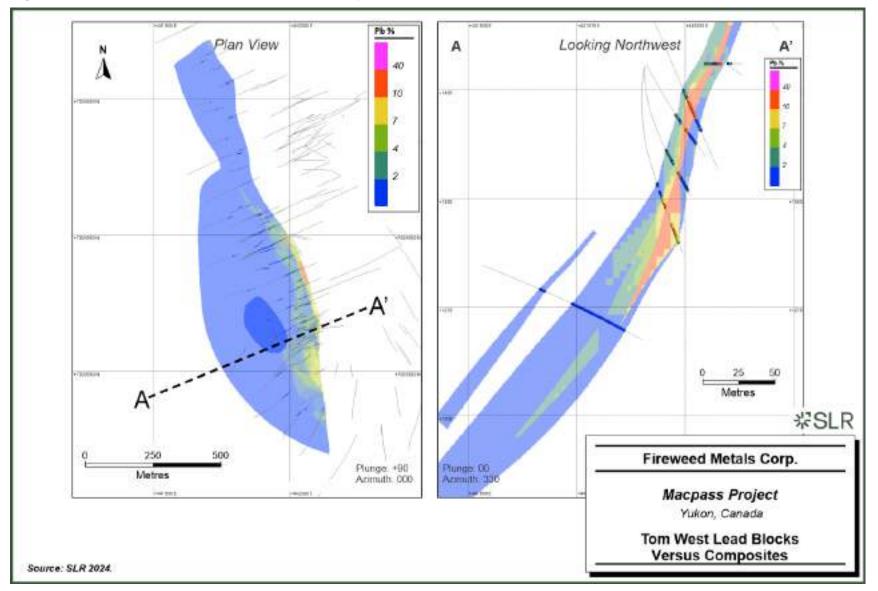
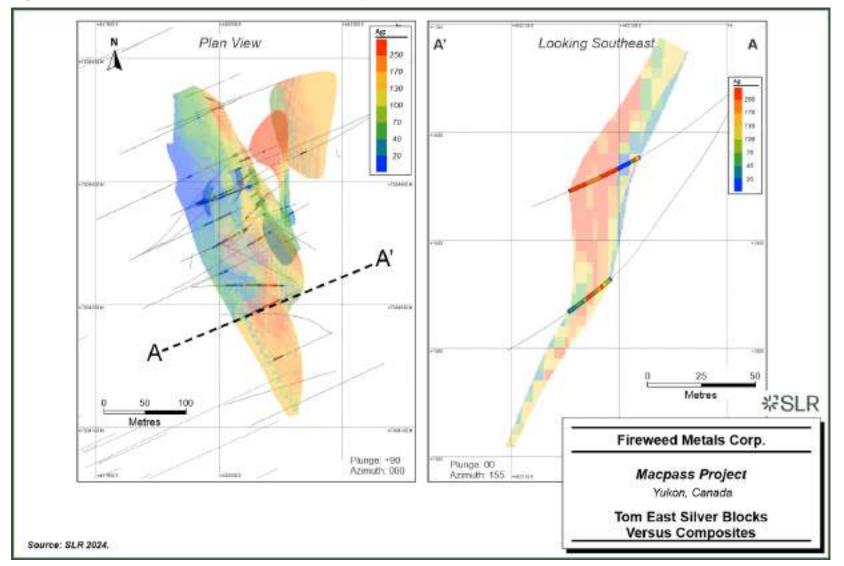



Figure 14-21: Tom West Lead Blocks Versus Composites

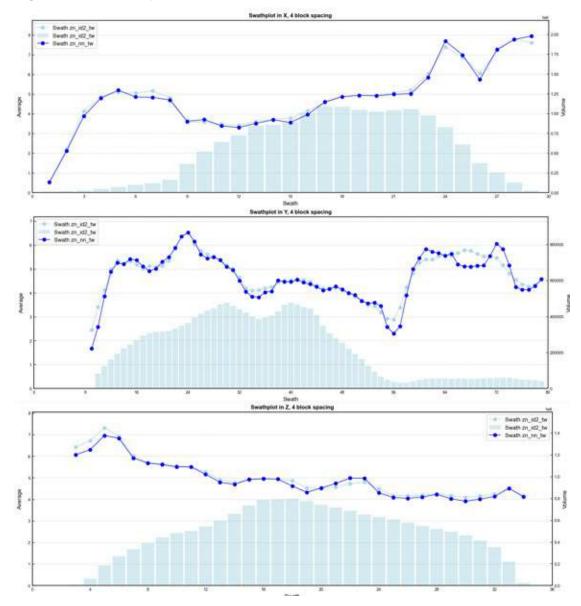


Figure 14-23: Example Swath Plots for Zinc ID² and Zinc NN, in Tom West

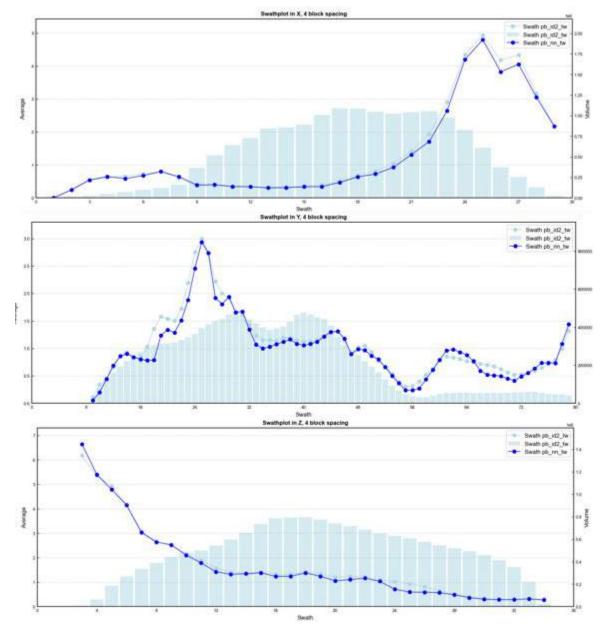
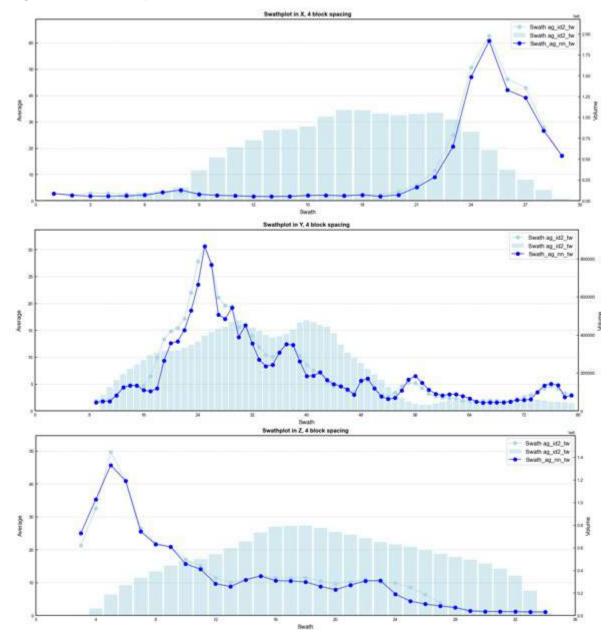
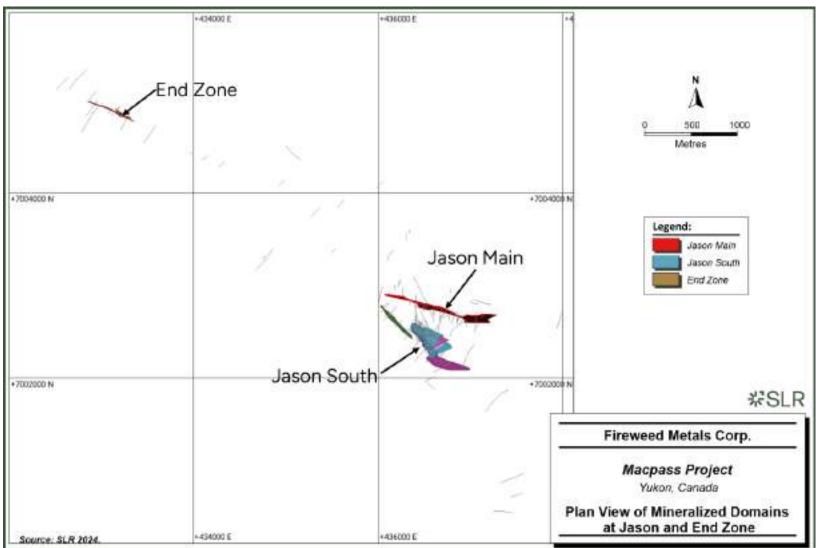


Figure 14-24: Example Swath Plots for Lead ID² and Lead NN, in Tom West




Figure 14-25: Example Swath Plots for Silver ID² and Silver NN, in Tom East

14.4 Jason and End Zone Deposits

14.4.1 Geological Interpretation

The Jason and End Zone deposit estimates are based on three separate zones, built into a single geological model: Jason Main, Jason South, and End Zone. All three areas contain Zn-Pb-Ag-Ba mineralization which varies from massive, banded sulphide to interbedded sulphides with cherts and carbonates, and irregularly distributed sulphides thought to be associated with a brecciated stockwork pipe. Three faults have been incorporated into the model, two of which pass through the mineralization at Jason Main and Jason South, offsetting the mineralization. The Jason and End Zone geological model was provided by Fireweed and further refined by SLR. Similar to Tom, the geological model was initially modelled using a series of offset surfaces to define each layered horizon. The model was later revised using a vein modelling approach to refine the final mineralization domains and to create a simplistic workflow. Figure 14-26 presents a plan view of the mineralized domains for Jason and End Zone.

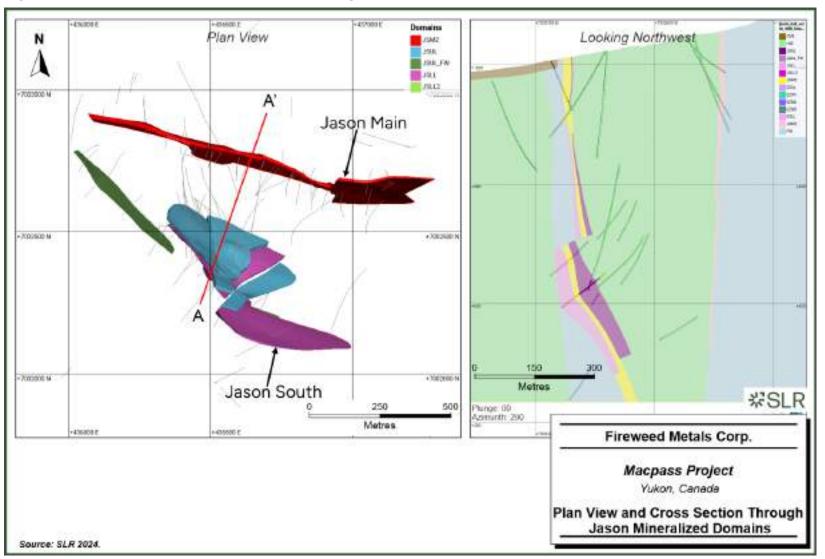
Figure 14-26: Plan View of Mineralized Domains at Jason and End Zone

14.4.1.1 Jason Main

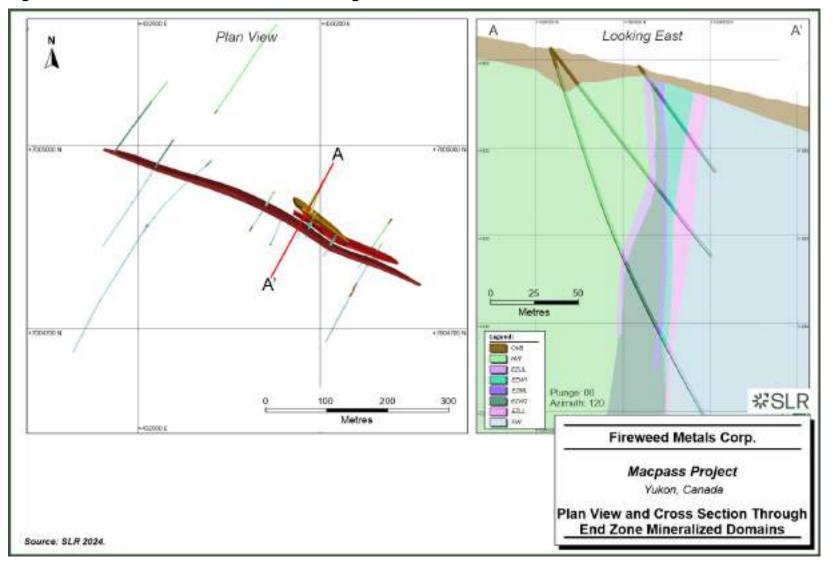
Jason Main is modelled as a single mineralized zone using a vein model with the surrounding framework using a series of offset surfaces. Jason Main is located on the northern limb of the east-plunging Jason syncline. The mineralization has a strike length of up to 1,200 m, down dip extension up to 800 m, and varies in thickness from two metres to 20 m.

14.4.1.2 Jason South

Jason South is located on the southern limb of the east-plunging Jason syncline and consists of two mineralized zones. Within the mineralized zones a high-grade lead and silver core has been modelled, thought to represent the feeder zone of mineralization.

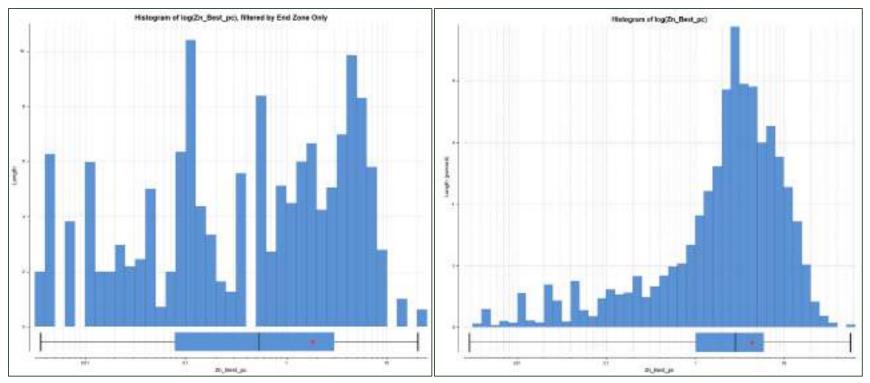

The mineralization model was also created using a vein system with the surrounding framework being constructed using a series of offset surfaces. The Jason South mineralization has a strike length of up to 750 m, down dip extension up to 650 m, and varies in thickness from two metres to 55 m (for each mineralized horizon). Figure 14-27 shows a plan view and cross section of the mineralized domains for Jason Main and Jason South.

14.4.1.3 End Zone

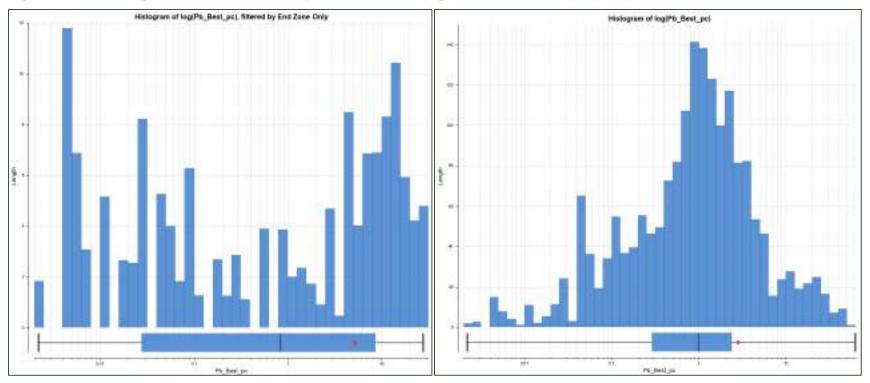

End Zone consists of three narrow, stratigraphically controlled mineralized zones that are interbedded with sediments.

End Zone mineralized zones have strike lengths between 90 m and 550 m, down dip extension up to 185 m, and varies in thickness from 2 m to 12 m.

Figure 14-28 shows a plan view and cross section through the End Zone mineralized domains.



An overburden wireframe was created to cover all three areas. The thickness of the overburden horizon ranges between no overburden and 65 m locally.


14.4.2 Estimation Domains

Once the geological model was complete, raw assays within each mineralized domain were reviewed using basic statistics, histograms, box plots, and contact plots to further refine the estimation domains. Grade contouring within each mineralized domain was also completed.

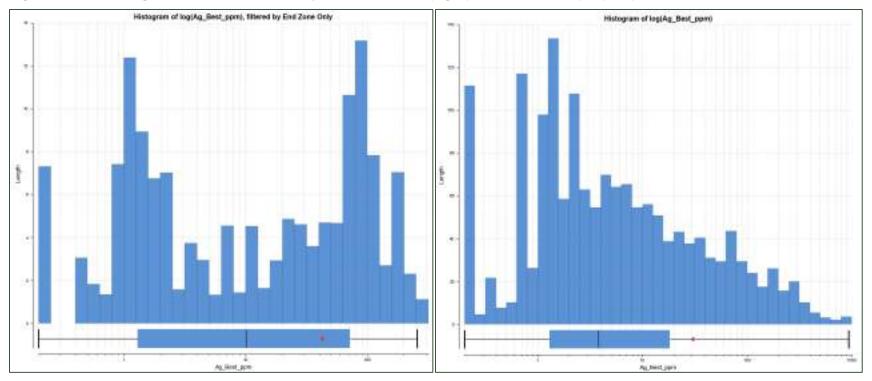
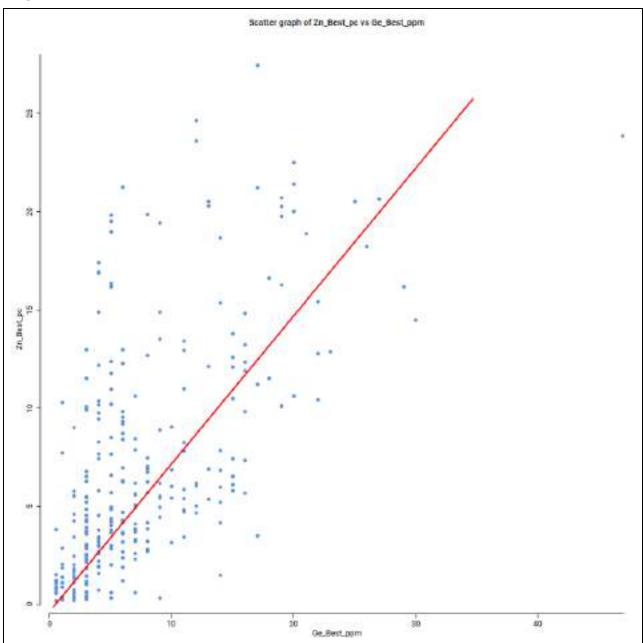

Figure 14-29 to Figure 14-31 show the histograms for raw zinc, lead, and silver assays for the Tom and Jason deposits.

Figure 14-29: Histogram of Raw Zinc Assays for the Jason (right) and End Zone (left) Deposits

Figure 14-30: Histogram of Raw Lead Assays for the Jason (right) and End Zone (left) Deposits

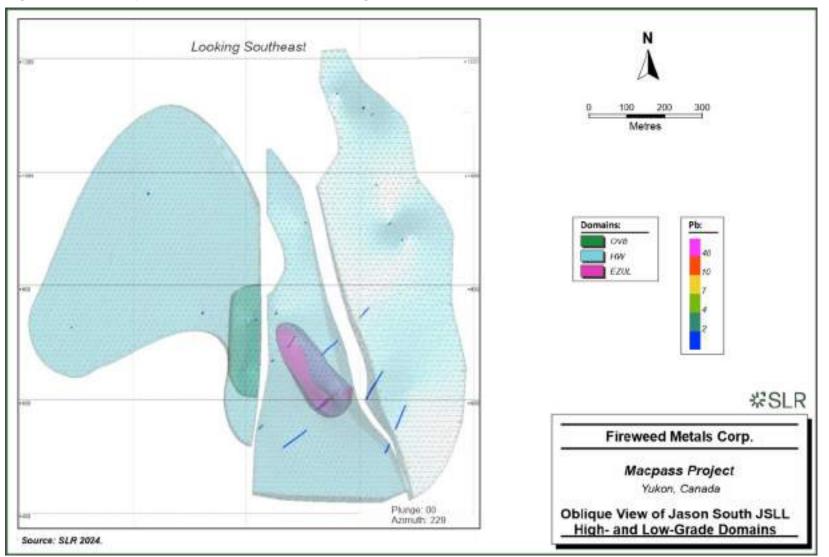
Figure 14-31: Histogram of Raw Silver Assays for the Jason (right) and End Zone (left) Deposits


14.4.2.1 Jason Main

A single domain was modelled for Jason Main and as such this was used as the estimation domain with a hard boundary for all variables (Table 14-35).

Table 14-35: Jason Main Estimation Domains

Variable	Estimation Domain
Zn, Pb, Ag, Ba, Ge, Ga	JSMZ
Density	


SLR used the same estimation domains as zinc for germanium and gallium due to the observed correlation between germanium and zinc. Figure 14-32 shows the correlation between zinc and germanium for Jason Main.



14.4.2.2 Jason South

The updated interpretation of Jason South includes the upper and lower mineralized zones, which both contain a high-grade lead and silver core, as illustrated in Figure 14-33. The distributions of the different elements were reviewed and demonstrated that the internal high-grade domains should be used for lead and silver, as supported by both raw statistics and contact plot analysis shown in Figure 14-34. Zinc and barium did not demonstrate separate populations across the boundaries, therefore, the high-grade domains were only used for lead and silver. The estimation domains for Jason South are summarized in Table 14-36.

Figure 14-34: Contact Plot Analysis Between Jason South JSLL Domain and Internal High-Grade

 Table 14-36:
 Jason South Estimation Domains

Variable	Estimation Domain
Zn, Ba, Ge, Ga	JSUL
	JSUL_FW
	JSLL
Zn, Pb, Ag, Ba, Ge, Ga	JSLL2
Pb, Ag	JSUL_LG
Density	JSUL_HG
	JSUL_FW
	JSLL_LG
	JSLL_HG

14.4.2.3 End Zone

Review of the raw statistics and contact plots between the different zones at End Zone support maintaining each wireframe as an estimation domain with hard boundaries for all variables. The estimation domains for End Zone are summarized in Table 14-37.

Table 14-37: End Zone Estimation Domains

Element	Estimation Domain
Zn, Pb, Ag, Ba, Ge, Ga	EZUL
Density	EZML
	EZLL

Jason and End Zone estimation domain extents are limited by unmineralized drill holes or at approximately half the local drill hole spacing distance.

14.4.3 Assay Statistics and Capping

SLR applied high-grade capping for some zinc, lead, and silver assays to limit the influence of a small number of extreme values located in the upper tail of the metal distributions. Raw assays were reviewed using basic statistics, histograms, log probability plots, and decile analysis to determine whether to cap various elements for each estimation domain independently. SLR notes that some domains exhibited low metal risk and were not capped.

Examples of the capping analysis are shown in Figure 14-35 and Figure 14-36 for the Jason Main domain.

Table 14-38 to Table 14-49 summarize the uncapped and capped assay statistics for Jason and End Zone.

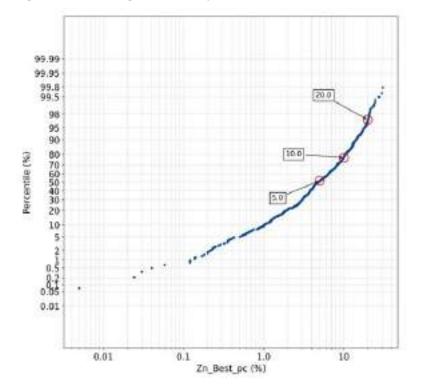
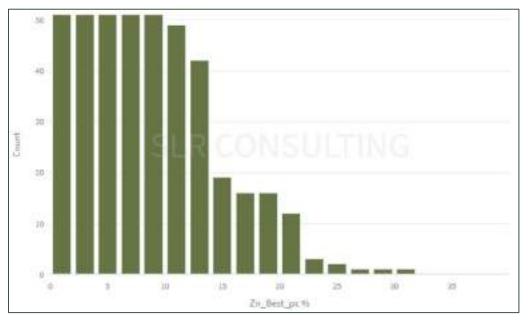



Figure 14-36: Histogram for Zinc in Jason Main, JSMZ. No cap applied

Area	Domain	Count	Cap (% Zn)	Number Capped	Mean (% Zn)	Capped Mean (% Zn)	Max. (% Zn)	Capped Max. (% Zn)	CV	Capped CV	Metal Loss
Jason Main	JSMZ	703	N/A	N/A	6.04	N/A	30.77	N/A	0.83	N/A	N/A
Jason South	JSUL JSUL_FW	398	35	3	4.89	4.8	55.79	35.00	1.31	1.22	1.8
	JSLL JSLL2	519	12	2	2.06	2.05	17.63	12	0.99	0.96	0.5

Table 14-38: Jason, Capped Zn Assay Statistics

Table 14-39: Jason, Capped Pb Assay Statistics

Area	Domain	Count	Cap (% Pb)	Number Capped	Mean (% Pb)	Capped Mean (% Pb)	Max. (% Pb)	Capped Max. (% Pb)	CV	Capped CV	Metal Loss
Jason Main	JSMZ	702	7	4	1.26	1.25	10.45	7.00	1.16	1.12	0.9
Jason South	JSUL_LG JSUL_FW	247	12	5	1.64	1.55	24.99	12.00	1.53	1.22	5.8
	JSUL_HG	134	42	5	10.7	10.43	62.13	42.00	1.17	1.12	2.5
	JSLL_HG	387	20	1	1.07	1.04	32.12	20.00	1.66	1.36	2.4
	JSLL_LG	61	38	2	10.19	9.99	46.70	38.00	1.18	1.15	2
	JSLL2	519	35	3	2.79	2.72	48.76	35.00	2.16	2.06	2.3

Area	Domain	Count	Cap (Ag g/t)	Number Capped	Mean (Ag g/t)	Capped Mean (Ag g/t)	Max. (Ag g/t)	Capped Max. (Ag g/t)	CV	Capped CV	Metal Loss
Jason Main	JSMZ	539	10	7	2.01	1.57	66.5	10.00	2.46	1.10	21.9
Jason South	JSUL JSUL_FW	245	120	5	13.2	12.15	365.10	120.00	1.98	1.59	7.9
	JSUL_HG	134	550	7	183.32	170.29	932.60	550.00	1.05	0.89	7.1
	JSLL_HG	382	40	11	9.33	8.48	129.90	40.00	1.46	1.06	9.1
	JSLL_LG	61	375	1	81.93	81.02	449.10	375.00	1.16	1.13	1.1
	JSLL2	47	75	6	55.33	32.09	555.40	75.00	1.69	0.74	42

 Table 14-40:
 Jason, Capped Ag Assay Statistics

 Table 14-41:
 Jason, Capped Ba Assay Statistics

Area	Domain	Count	Cap (Ba %)	Number Capped	Mean (Ba %)	Capped Mean (Ba %)	Max. (Ba %)	Capped Max. (Ba %)	CV	Capped CV	Metal Loss
Jason Main	JSMZ	678	N/A	N/A	10	N/A	55.75	N/A	1.78	N/A	N/A
Jason South	JSUL JSUL_FW	376	N/A	N/A	13.83	N/A	70.00	N/A	1.05	N/A	N/A
	JSLL JSLL2	513	N/A	N/A	14.7	N/A	47.11	N/A	0.99	N/A	N/A

Area	Domain	Count	Cap (Ge g/t)	Number Capped	Mean (Ge g/t)	Capped Mean (Ge g/t)	Max. (Ge g/t)	Capped Max. (Ge g/t)	CV	Capped CV	Metal Loss
Jason Main	JSMZ	211	30.0	7	9.62	8.64	92	30	1.18	0.77	10.1
Jason South	JSUL JSUL_FW	0	N/A	N/A	0	N/A	0	N/A	0	N/A	N/A
	JSLL JSLL2	35	N/A	N/A	4.76	N/A	15.0	N/A	0.61	N/A	N/A

 Table 14-42:
 Jason, Capped Ge Assay Statistics

 Table 14-43:
 Jason, Capped Ga Assay Statistics

Area	Domain	Count	Cap (Ga g/t)	Number Capped	Mean (Ga g/t)	Capped Mean (Ga g/t)	Max. (Ga g/t)	Capped Max. (Ga g/t)	CV	Capped CV	Metal Loss
Jason Main	JSMZ	211	N/A	N/A	6.35	N/A	21.00	N/A	0.72	N/A	N/A
Jason South	JSUL JSUL_FW	0	N/A	N/A	0.00	N/A	0.00	N/A	0	N/A	N/A
	JSLL JSLL2	38	N/A	N/A	7.92	N/A	16.0	N/A	0.57	N/A	N/A

Table 14-44: End Zone, Capped Zn Assay Statistics

Area	Domain	Count	Cap (% Zn)	Number Capped	Mean (% Zn)	Capped Mean (% Zn)	Max. (% Zn)	Capped Max. (% Zn)	CV	Capped CV	Metal Loss
End Zone	EZUL EZML EZLL	141	10	3	1.75	1.68	20.32	10.00	1.51	1.38	3.8

Area	Domain	Count	Cap (% Pb)	Number Capped	Mean (% Pb)	Capped Mean (% Pb)	Max. (% Pb)	Capped Max. (% Pb)	CV	Capped CV	Metal Loss
End Zone	EZUL EZML EZLL	141	N/A	N/A	4.96	N/A	27.70	N/A	1.43	N/A	N/A

Table 14-46: End Zone, Capped Ag Assay Statistics

Area	Domain	Count	Cap (Ag g/t)	Number Capped	Mean (Ag g/t)	Capped Mean (Ag g/t)	Max. (Ag g/t)	Capped Max. (Ag g/t)	CV	Capped CV	Metal Loss
End Zone	EZUL EZML	141	130	16	40.96	36.69	253.60	130.00	1.38	1.24	10.4
	EZIL										

Table 14-47: End Zone, Capped Ba Assay Statistics

Area	Domain	Count	Cap (Ba %)	Number Capped	Mean (Ba %)	Capped Mean (Ba %)	Max. (Ba %)	Capped Max. (Ba %)	CV	Capped CV	Metal Loss
End Zone	EZUL EZML	140	N/A	N/A	0.07	N/A	0.93	N/A	1.68	N/A	N/A
	EZLL										

Area	Domain	Count	Cap (Ge %)	Number Capped	Mean (Ge %)	Capped Mean (Ge %)	Max. (Ge %)	Capped Max. (Ge %)	CV	Capped CV	Metal Loss
End Zone	EZUL EZML EZLL	51	N/A	N/A	4.76	N/A	17.0	N/A	0.80	N/A	N/A

Table 14-49: End Zone, Capped Ga Assay Statistics

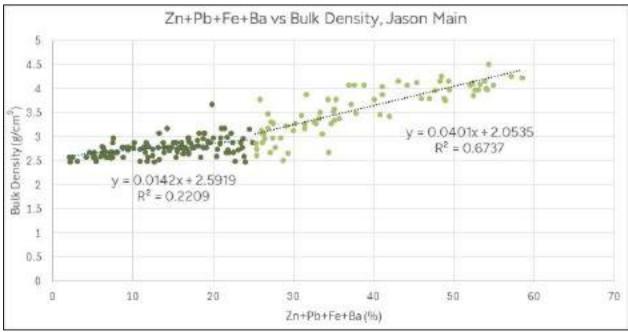
Area	Domain	Count	•	Number Capped	Mean (Ga %)	Capped Mean (Ga %)	Max. (Ga %)	Capped Max. (Ga %)	CV	Capped CV	Metal Loss
End Zone	EZUL EZML EZLL	79	N/A	N/A	5.64	N/A	28.0	N/A	0.82	N/A	N/A

14.4.4 Density

A total of 1,335 density measurements were collected at Jason and End Zone within the mineralized domains with densities ranging from 2.01 g/cm³ to 5.17 g/cm³. Multiple regression calculations were analyzed for all of the data within the mineralized domains and then split by Jason Main, Jason South, and End Zone.

The regression calculations use the sum of Zn, Pb, Fe, and Ba versus measured density as they had the lowest mean squared error compared to measured density values. Outliers were removed from the data to prevent skewed results. At Jason Main, the regression equation was split to capture multiple populations. Sulphur aids the regressions significantly, however, it was not well sampled historically and as such was not used in the regression calculation.

A basement for regressed values was applied at 2.60 g/cm³ for all intervals.


An example scatterplot for Jason Main that was used to calculate the regression equation is shown in Figure 14-37 and the regression equations per domain are outlined in Table 14-50.

For the final density variables in Jason, measured values were prioritized, followed by regressed values (Table 14-50). The values reported in Table 14-51 were used for all remaining intervals that did not have the required assays to calculate a regressed value.

In total, 362 density values were regressed and 46 density values were assigned mean values within the mineralized domains at Jason and End Zone.

The regressed density values were validated against measured density by performing random checks using low-, medium-, and high-grade samples to ensure the regressed formulas were calculating density appropriately.

Figure 14-37: Example Scatterplot of Zn + Pb + Fe + Ba Compared to Density Within the Jason Main Mineralization

Domains	Regression Equation	Mean Squared Error
Jason Main	If x < 25 then y = 0.0142 + 2.5919 If x > 25 then y = 0.0401 + 2.0535	5.55%
Jason South	y = 0.0281x + 2.4971	4.50%
End Zone	y = 0.0347x + 2.4636	3.27%

Table 14-50: Jason and End Zone Density Regression Equations

Table 14-51: Jason and End Zone Mean Measured Density Values

Area	Domains	Mean Density (g/cm³)
Jason Main	JSMZ	3.13
Jason South	JSUL	3.35
	JSUL_FW	2.78
	JSLL	3.33
	JSLL2	3.03
End Zone	EZUL	2.95
	EZML	2.84
	EZLL	3.56

14.4.5 Germanium and Gallium

A total of 297 germanium and 339 gallium samples were collected within the mineralized domains at the Jason and End Zone deposits where germanium values range from 0.5 g/t to 92 g/t and gallium values range from 0.5 g/t to 28 g/t. Due to this limited assay coverage for germanium and gallium, regressions with zinc or zinc and aluminum (where possible) were used where no gallium or germanium assay data was available. Multiple regression calculations were analyzed by combined and by individual domains. The regressions for germanium compare against zinc only whereas the regressions for gallium compare against the sum of zinc and aluminum.

An example germanium scatterplot for Jason Main used to calculate the regression equation is shown in Figure 14-38. The regression equations per domain for both germanium and gallium are outlined in Table 14-52. Table 14-53 and Table 14-54 show the assay statistics of the regressed germanium and gallium values, respectively, for each domain at the Jason and End Zone deposits.

The regressed germanium and gallium values were validated against measured germanium and gallium by performing random checks using low-, medium-, and high-grade samples to ensure the regressed formulas were calculating germanium and gallium appropriately.

For the final germanium and gallium variables used to create composites for Jason and End Zone, measured values (Table 14-42 and Table 14-43) were prioritized, followed by regressed values. The values reported in Table 14-53 and Table 14-54 provide the regressed assay statistics for germanium and gallium, respectively, excluding measured values.

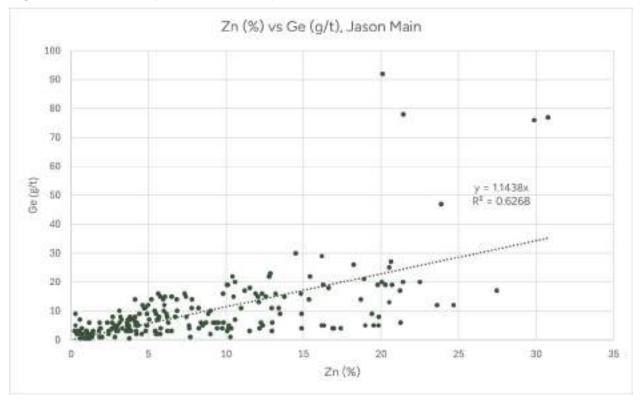


Figure 14-38: Scatterplot of Zinc Compared to Germanium Within the Jason Main Domain

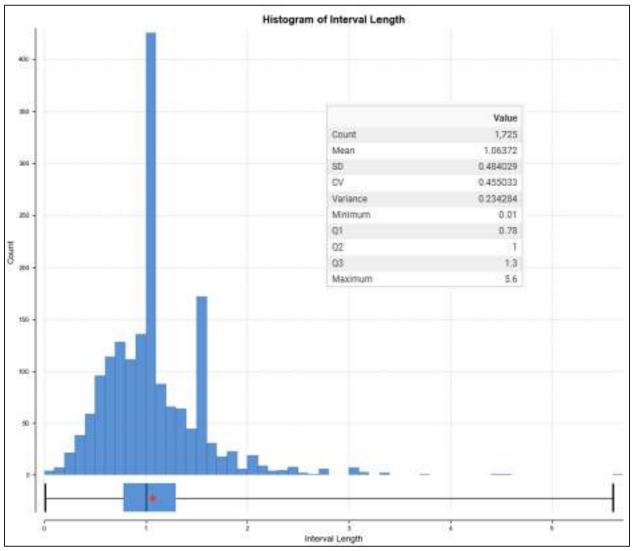
 Table 14-52:
 Jason and End Zone Germanium and Gallium Regression Equations

Area	Element	Domains	Regression Equation	R-squared Value
Jason	Ge	JSMZ	y = 1.144x	0.6268
		JSLL, JSLL2	y = 1.131x	0.6252
	Ga	JSMZ	y = 0.533x	0.5507
		JSLL, JSLL2	y = 0.585	0.5574
End Zone	Ge	EZLL, EZUL, EZML	y = 1.048x	0.656
	Ga	EZLL, EZUL, EZML	y = 1.161x	0.6974

Area	Domain	Count	Length (m)	Mean (Ge g/t)	CV	Min (Ge g/t)	Max (Ge g/t)
Jason	JSMZ	487	595	6.33	0.79	0.01	27.97
	JSUL	376	383	5.76	1.28	0.01	63.08
	JSUL_FW	13	15	0.33	1.69	0.01	2.20
	JSLL	452	476	2.06	0.88	0.00	10.06
	JSLL2	14	16	5.74	0.71	0.01	15.85
End Zone	EZUL	14	18	0.57	3.08	0.01	8.60
	EZML	14	23	0.05	1.20	0.00	0.19
	EZLL	57	54	1.60	1.28	0.01	9.37
Notes: 1. Coefficient of va	riation						

Table 14-53:	Jason and End Zone, Regressed Germanium Assay Statistics
--------------	--

Table 14-54: Jason and End Zone, Regressed Gallium Assay Statistics


Area	Domain	Count	Length (m)	Mean (Ga g/t)	CV	Min (Ga g/t)	Max (Ga g/t)
Jason	JSMZ	476	588	2.93	0.79	0.00	10.87
	JSUL	376	383	2.98	1.28	0.00	32.65
	JSUL_FW	13	15	0.17	1.69	0.01	1.14
	JSLL	451	475	1.07	0.87	0.00	5.21
	JSLL2	12	14	9.19	0.60	1.64	22.95
End Zone	EZUL	9	13	0.81	2.82	0.01	9.52
	EZML	9	17	0.04	1.62	0.00	0.21
	EZLL	39	37	2.65	0.93	0.01	10.78

14.4.6 Compositing

The dominant sampling length for Jason and End zones is also bimodal, with most samples at one metre and 1.53 m (Figure 14-39). The compositing approach was to use the smallest composite possible that also split less than 5% of the samples. When a composite length of two metres is selected, 55 of 1,725 samples (3.19 %) are split; when a composite length of 1.53 m is selected, then 208 of the 1,725 samples (12.06%) are split. The capped assay samples at Jason and End zones were therefore composited to two metres, supported by a multiple of one of the dominant sampling lengths, and broken at domain boundaries. Any composites that were less than 0.5 m in length were added to the previous interval. Zn, Pb, Ag, and Ba composites were density weighted.

Raw interval length statistics versus composite length statistics by area are presented in Table 14-55. The statistical values indicate that there is a less than 1% difference between the total raw interval lengths versus the composited lengths for each area. Table 14-56 to Table 14-62 present the capped composite statistics in Jason by individual domain for zinc, lead, silver, barium, germanium, and gallium, respectively. Table 14-62 through Table 14-67 present the capped composite statistics in End Zone by individual domain for zinc, lead, silver, barium, and gallium, respectively.

Table 14-55:	Jason and End Zone Interval Length Statistics by Area
--------------	---

Area	Total Raw Assay Length (m)	Total Composite Length (m)	% Difference
Jason Main	766	766	0.0
Jason South	921	928	0.7
End Zone	148	18	0.0

 Table 14-56:
 Jason Two Metre Zinc Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Zn (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
Jason Main	JSMZ	395	766.6	6.10	0.74	0.02	2.81	4.74	8.83	24.17
Jason South	JSUL	199	389.3	5.20	1.01	0.01	1.87	3.72	7.08	31.04
	JSUL_FW	9	15.4	0.30	1.25	0.01	0.13	0.18	0.48	1.15
	JSLL	245	478.8	1.86	0.76	0.01	0.71	1.77	2.73	8.68
	JSLL2	22	44.6	4.50	0.62	1.66	2.63	3.53	6.16	9.91

Area	Domain	Count	Length	Mean Grade Pb (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
Jason Main	JSMZ	395	766.6	1.27	1.01	0.02	0.28	0.83	1.88	6.17
Jason South	JSUL_LG	133	249.0	1.68	1.12	0.04	0.72	1.16	1.92	11.97
	JSUL_HG	57	109.8	11.63	0.93	0.29	1.77	9.14	18.67	40.00
	JSUL_HG2	3	6.3	11.47	1.01	0.96	0.96	11.89	23.56	23.56
	JSUL_HG3	13	24.2	6.15	0.95	0.94	1.47	3.23	10.33	15.68
	JSUL_FW	9	15.4	0.78	1.59	0.00	0.01	0.05	1.43	3.01
	JSLL_LG	202	388.0	1.04	0.88	0.01	0.43	0.90	1.33	5.97
	JSLL_HG	29	54.9	10.03	0.99	1.64	3.75	4.89	14.56	31.30
	JSLL_HG2	18	35.9	10.04	0.66	1.87	4.56	9.11	16.99	22.44

Table 14-57: Jason Two Metre Lead Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Ag (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
Jason Main	JSMZ	395	766.6	1.22	1.16	0.25	0.25	0.74	1.60	10.00
Jason South	JSUL_LG	133	249.0	12.55	1.43	0.25	1.89	6.42	16.24	99.79
	JSUL_HG	57	109.8	186.73	0.72	4.36	71.68	145.40	280.47	500.00
	JSUL_HG2	3	6.3	155.15	0.96	45.77	45.77	110.21	328.00	328.00
	JSUL_HG3	13	24.2	101.23	0.78	13.42	36.03	62.48	169.10	219.95
	JSUL_FW	9	15.4	5.69	1.23	0.25	0.25	0.25	11.18	19.00
	JSLL_LG	202	388.0	8.20	0.99	0.25	2.65	5.81	10.51	40.00
	JSLL_HG	29	54.9	70.51	0.88	22.20	27.30	37.85	108.21	226.91
	JSLL_HG2	18	35.9	69.18	0.57	13.48	37.34	66.22	99.16	143.61

Table 14-58: Jason Two Metre Silver Composite Statistics

 Table 14-59:
 Jason Two Metre Barium Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Ba (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
Jason Main	373	724.9	10.36	1.70	0.00	0.04	0.32	9.12	53.50	373
Jason South	196	382.9	13.45	0.99	0.01	1.34	9.99	24.10	49.05	196
	238	465.4	15.43	0.92	0.02	0.32	12.19	28.99	45.63	238
	22	44.6	12.62	0.99	0.10	1.08	9.19	27.21	35.52	22

Area	Domain	Count	Length (m)	Mean Grade Ge (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
Jason Main	JSMZ	396	769	6.86	0.73	0.02	3.09	5.31	9.98	30.00
Jason South	JSUL	199	389	6.03	1.11	0.01	2.12	4.20	8.01	51.49
	JSUL_FW	9	15	0.34	1.25	0.01	0.14	0.20	0.55	1.31
	JSLL	245	479	2.07	0.74	0.01	0.80	2.01	3.09	9.01
	JSLL2	22	45	5.15	0.46	2.00	3.24	4.83	6.19	10.53

Table 14-60: Jason Two Metre Germanium Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Ga (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
Jason Main	JSMZ	396	769	3.72	0.81	0.01	1.51	2.79	5.23	17.23
Jason South	JSUL	199	389	3.12	1.11	0.00	1.10	2.17	4.14	26.65
	JSUL_FW	9	15	0.18	1.25	0.01	0.07	0.10	0.28	0.68
	JSLL	245	479	1.09	0.74	0.01	0.45	1.04	1.60	4.66
	JSLL2	22	45	8.72	0.47	3.02	4.70	8.44	12.07	15.25

Area	Domain	Count	Length (m)	Mean Grade Zn (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
End Zone	EZUL	14	26.5	1.13	1.28	0.06	0.09	0.59	1.86	4.34
	EZML	17	31.5	0.19	1.45	0.00	0.01	0.08	0.30	0.95
	EZLL	49	90.1	2.53	0.92	0.01	0.17	2.01	4.34	7.34

 Table 14-62:
 End Zone Two Metre Zinc Composite Statistics

 Table 14-63:
 End Zone Two Metre Lead Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Pb (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
End	EZUL	14	26.5	0.01	0.67	0.01	0.01	0.01	0.01	0.02
Zone	EZML	17	31.5	0.19	2.11	0.00	0.03	0.06	0.08	1.55
	EZLL	49	90.1	8.57	0.80	0.02	2.55	8.31	12.87	25.77

 Table 14-64:
 End Zone Two Metre Silver Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Ag (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
End Zone	EZUL	14	26.5	1.02	0.67	0.20	0.40	1.07	1.34	2.66
	EZML	17	31.5	3.58	1.46	0.40	1.03	1.60	3.43	21.00
	EZLL	49	90.1	61.73	0.66	1.00	22.47	65.10	89.06	130.00

Area	Domain	Count	Length	Mean Grade Ba (%)	CV	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
End Zone	EZUL	14	26.5	1.02	0.67	0.20	0.40	1.07	1.34	2.66
	EZML	17	31.5	3.58	1.46	0.40	1.03	1.60	3.43	21.00
	EZLL	49	90.1	61.73	0.66	1.00	22.47	65.10	89.06	130.00

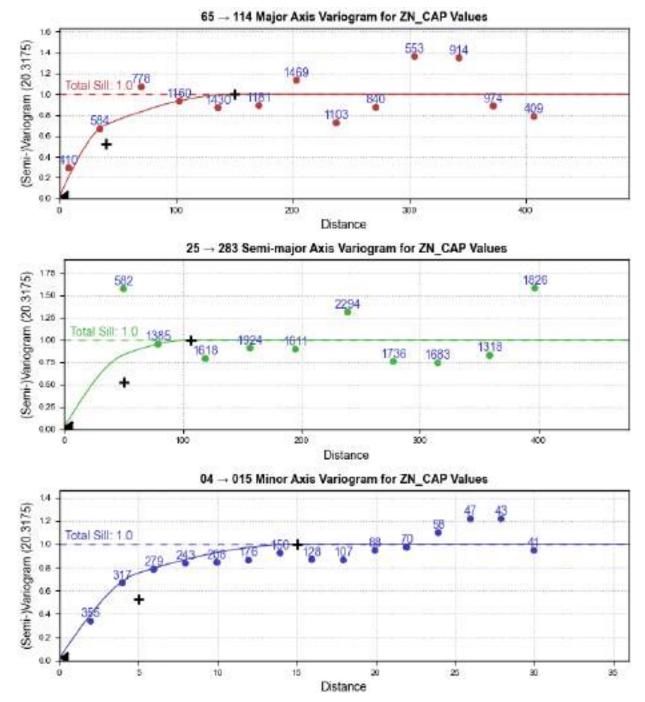
Table 14-65: End Zone Two Metre Barium Composite Statistics

Table 14-66: End Zone Two Metre Germanium Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Ge (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
End Zone	EZUL	14	26	1.85	1.66	0.06	0.09	0.34	3.49	10.76
	EZML	17	32	0.39	1.60	0.00	0.01	0.08	0.88	2.00
	EZLL	49	90	3.18	0.92	0.01	0.39	2.48	5.35	11.11

 Table 14-67:
 End Zone Two Metre Gallium Composite Statistics

Area	Domain	Count	Length (m)	Mean Grade Ga (g/t)	CV	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
End Zone	EZUL	14	26	2.25	0.99	0.07	0.14	1.44	4.32	6.00
	EZML	17	32	1.47	1.13	0.00	0.01	0.19	2.94	5.00
	EZLL	49	90	5.05	0.77	0.06	2.50	4.19	6.62	16.79


14.4.7 Trend Analysis

14.4.7.1 Variography

SLR prepared variograms for Zn, Pb, and Ag across selected domains at Jason. Jason Main was selected as it represented the best supported mineralization based on drill hole spacing and continuity. Examples of the modelled variograms for Jason Main are shown in Figure 14-40. Jason South and End Zone did not produce robust variograms.

All variables were estimated using ID², and as such, variogram ranges and anisotropy were not applied during estimation as they would be applied for other estimation methods such as ordinary kriging. Variogram ranges were used to provide a guide for search ellipse dimensions and ranges. Variogram ranges were also considered as one of the resource classification criteria.

Table 14-68 summarizes the variograms for Jason Main.

Figure 14-40: Modelled Variogram for Zinc in the Jason Main Domain

	Area		Jason Main		
	Variable	Zn	Pb	Ag	
Direction	Dip	86	86	86	
	Dip Azimuth	195	195	195	
	Pitch	65	65	65	
	Variance	2.09	1.65	20.31	
	Nugget	0.10	0.08	0.51	
	Normalized Nugget	0.05	0.05	0.025	
Structure 1	Sill	0.837	0.697	10.16	
	Normalized sill	0.4	0.42	0.5	
	Structure	Spherical	Spherical	Spherical	
	Alpha	0	0	0	
	Major (m)	135	29	40	
	Semi-major (m)	70	30	50	
	Minor (m)	9	7	5	
Structure 2	Sill	1.15	0.88	9.65	
	Normalized sill	0.55	0.53	0.47	
	Structure	Spherical	Spherical	Spherical	
	Alpha	0	0	0	
	Major (m)	150	100	150	
	Semi-major (m)	84	85	107	
	Minor (m)	15	18	15	

Table 14-68: Jason Main Zinc, Lead, and Silver Variograms

14.4.7.2 Grade Contouring

Grade contouring within each domain was carried out in Jason and End Zone. This allowed customization of the directional anisotropy of the mineralization on a per domain basis. Averaged trends between the different elements and density were used to assign a single trend across all variables to prevent contrasting anisotropies being applied to density.

The outputs of the grade contouring were used to aid initial variogram and search ellipse orientations and to help validate the block model.

14.4.8 Search Strategy and Grade Interpolation Parameters

Grades and density were estimated into parent blocks using a multi-pass ID² approach and composite selection plans as outlined in Table 14-69 and Table 14-70 for Jason and End Zone. Search ellipses for grade and density interpolation were oriented using dynamic anisotropy with the longest axis parallel to the mineralization.

The same search strategy and interpolation parameters were applied for Zn, Pb, Ag, Ba and density. Germanium used the same search strategy and interpolation parameters as zinc due to the strong correlation observed between these two elements. SLR applied a similar search strategy for gallium but used an isotropic search ellipse due to the poor correlation observed between gallium and zinc.

Post-estimation calculations were used to determine the final grades for all elements: Zn, Pb, Ag, Ba, Ge, and Ga.

High-grade outlier restrictions were applied when over-extrapolation was observed at the block model validation stage. The high-grade outlier restriction clamps composites to an assigned value when they are found beyond the first pass search distance and are to be used in the estimate. These restrictions are described in Table 14-71 for Jason.

Domain	Method	1 st Pass (m)		2 nd Pass (m)		3 rd Pass (m)			4 th Pass (m)				
		x-axis	y-axis	z-axis	x-axis	y-axis	z-axis	x-axis	y-axis	z-axis	x-axis	y-axis	z-axis
All	ID ²	60	60	15	120	120	30	240	240	60	480	480	120

Table 14-69: Jason and End Zone Search Strategy Parameters

Table 14-70: Jason and End Zone Interpolation Parameters
--

Domain	1 st Pass			nain 1 st Pass 2 nd Pass			3 rd Pass			4 th Pass		
	Min	Мах	Max per DDH	Min	Max	Max per DDH	Min	Max	Max per DDH	Min	Max	Max per DDH
All	6	12	3	6	12	3	1	12	3	1	12	3

Domain	Zn (%)
JSMZ	12
JSUL	12

14.4.9 Block Models

Separate block models were created for Jason and End Zone. Block model construction and estimation were completed using Leapfrog Edge 2023.2 software and the dimensions are presented in Table 14-72 for Jason and Table 14-73 for End Zone.

SLR regularized each block model to a 5 m x 5 m x 5 m block size for pit optimization and mining sensitivity analysis. For final open pit resource reporting for Jason and End Zone, the sub-blocked versions of each model were used. The SLR QP considers the sub-blocked models more appropriate for reporting due to the deposit type and style of mineralization.

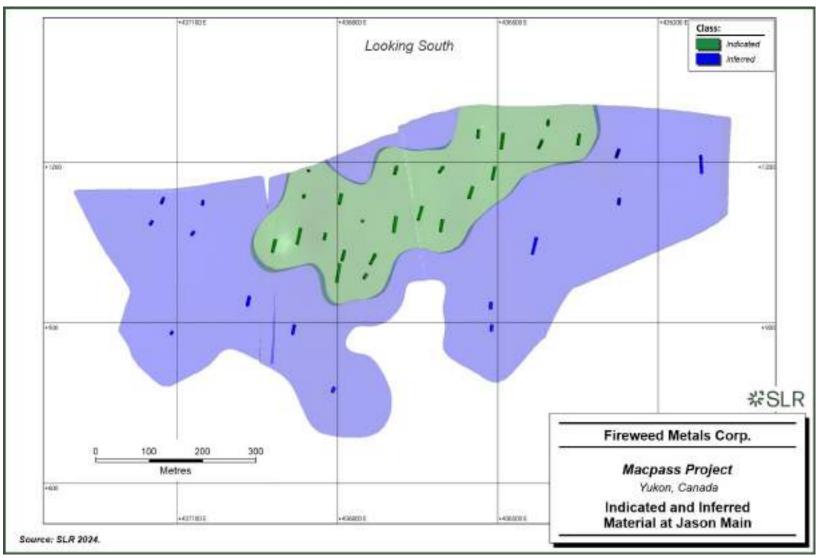
	X	Y	Z
Base Point	435,750	7,001,700	1,400
Boundary Size (m)	1,890	1,600	1,040
Parent Block Size (m)	5	5	5
Min. Sub-block Size (m)	0.625	0.625	0.625

Table 14-72: Jason Block Model

Table 14-73: End Zone Block Model

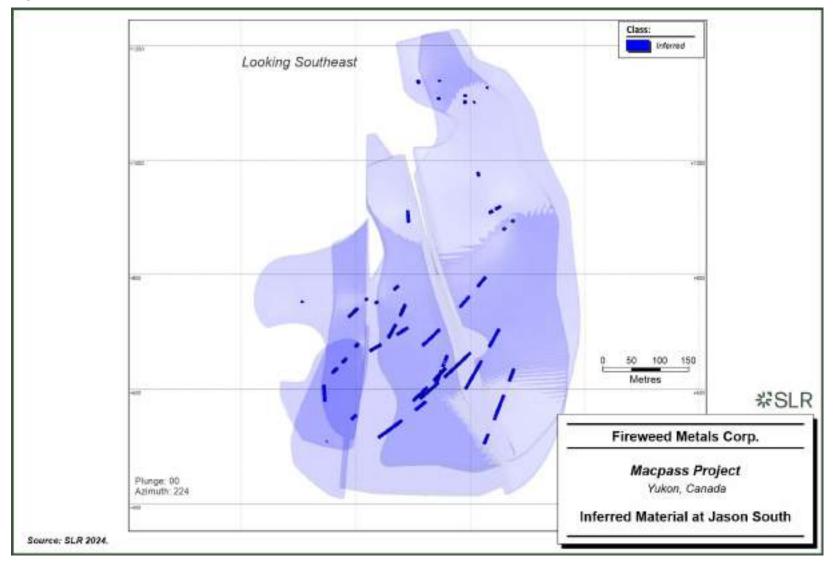
	X	Y	Z
Base Point	432,750	7,004,600	1,530
Boundary Size (m)	800	500	400
Parent Block Size (m)	5	5	5
Min. Sub-block Size (m)	0.625	0.625	0.625

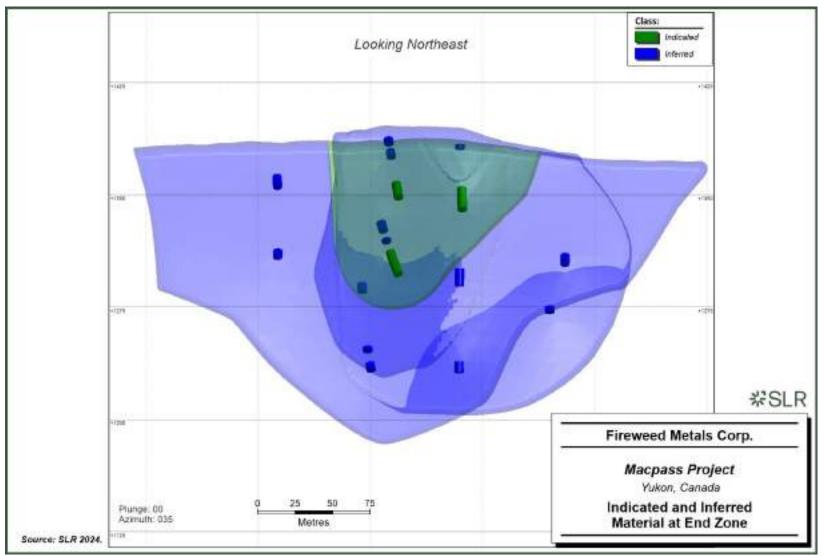
14.4.10 Classification


Definitions for resource categories used are consistent with those defined by CIM (2014) and adopted by NI 43-101. In the CIM classification, a Mineral Resource is defined as "a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction". Mineral Resources are classified into Measured, Indicated, and Inferred categories.

14.4.10.1 Jason Deposit

At Jason Main, Indicated and Inferred Mineral Resources have been defined where drill hole spacings of up to approximately 85 m (100% of variogram range) and 170 m (200% variogram range) were achieved, respectively. The areas were modified to consider geological and grade continuity, mineralization thickness (approximately two metres to 15 m for Indicated), and the creation of cohesive class boundaries. Figure 14-41 shows the Indicated and Inferred material at Jason Main.


Only Inferred Resources have been defined at Jason South, despite some areas where drill hole spacing is tighter than 85 m. Two main factors have prevented Indicated Resources from being defined at Jason South, including (i) the uncertain placement of the faults and resultant offset in the mineralized horizons, thereby reducing confidence in the interpretation, and (ii) the inability to model robust variograms. Figure 14-42 shows the Inferred material at Jason South.


Figure 14-41: Indicated and Inferred Material at Jason Main

14.4.10.2 End Zone Deposit

At End Zone, Indicated and Inferred Mineral Resources have been defined primarily by geological and grade continuity for the creation of cohesive class boundaries (Figure 14-43). The drill spacing is approximately 45 m within the Indicated Material and 90 m within the Inferred Material.

Figure 14-43: Indicated and Inferred Material at End Zone

14.4.11 Block Model Validation

Blocks were validated using various techniques, including:

- Statistical comparison of assay, composite, and block statistics.
- Visual inspection of composite versus block grades.
- Wireframe to block model volume confirmation.
- Swath plots comparing ID² to NN values.

Table 14-74 and Table 14-75 summarize the assay, composite, and block comparisons for Jason and End Zone.

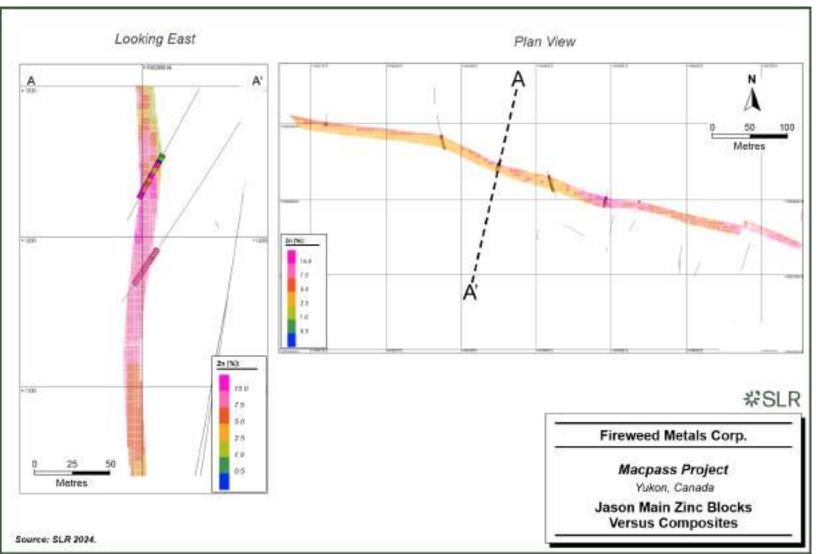

Evaluation of the accuracy of the estimate was also carried out by visually comparing the composites against the estimated block grades in plan and cross-sectional views. Examples are presented in Figure 14-44, Figure 14-45, and Figure 14-46 for Jason with example swath plots presented in Figure 14-47, Figure 14-48, and Figure 14-49.

Figure 14-50, Figure 14-51, and Figure 14-52 present the composites against the estimated block grades for End Zone. Example swath plots for End Zone are shown in Figure 14-53, Figure 14-54, and Figure 14-55.

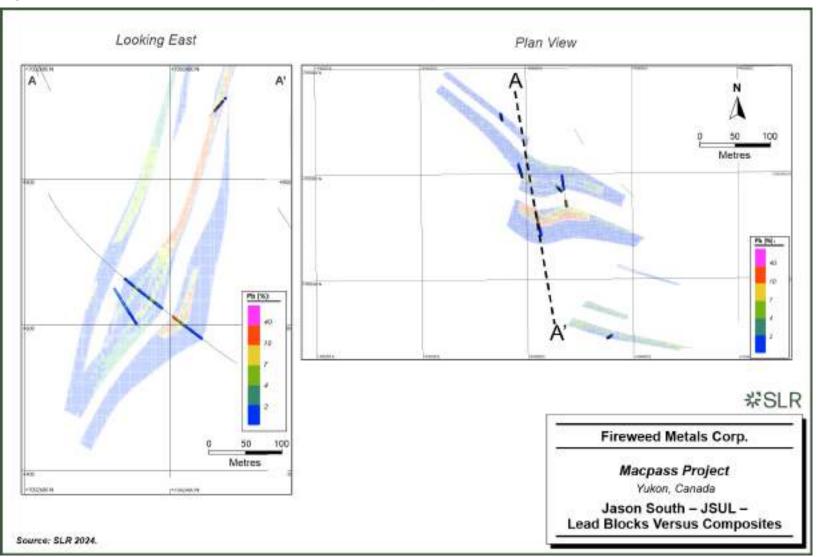

Area	Domain	Capped Assay Count	Capped Assay Mean	Composite Assay Count	Composite Assay Mean	Parent Block Count	NN	ID ²
Zn %								
Jason Main	JSMZ	697	6.09	395	6.10	3,266,559	5.03	4.94
Jason South	JSUL	376	4.97	199	5.20	2,138,030	5.06	4.94
	JSUL_FW	13	0.29	9	0.30	347,877	0.26	0.25
	JSLL	454	1.85	245	1.86	2,701,722	2.03	2.01
	JSLL2	47	4.50	22	4.50	141,977	4.28	4.85
Pb %								
Jason Main	JSMZ	698	1.26	395	1.27	3,266,559	0.92	0.92
Jason South	JSUL_LG	238	1.58	133	1.68	1,705,183	1.55	1.58
	JSUL_HG1	109	11.33	57	11.63	245,142	12.62	12.07
	JSUL_HG2	7	11.16	3	11.47	62,397	12.44	12.04
	JSUL_HG3	25	5.76	13	6.15	125,308	6.67	6.14
	JSUL_FW	13	0.75	9	0.78	347,877	0.63	0.77
	JSLL_LG	369	1.03	202	1.04	2,528,338	1.02	1.05
	JSLL_HG1	54	9.75	29	10.03	87,278	9.13	10.03
	JSLL_HG2	31	9.74	18	10.04	86,106	10.30	11.05

Table 14-74: Jason Deposit Assay, Composite, and Block Comparisons

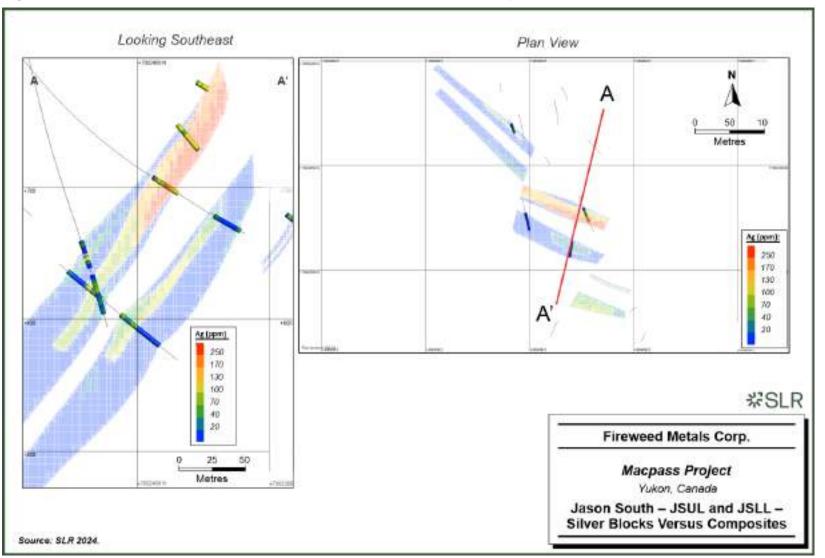

Area	Domain	Capped Assay Count	Capped Assay Mean	Composite Assay Count	Composite Assay Mean	Parent Block Count	NN	ID ²
Ag g/t								
Jason Main	JSMZ	698	1.21	395	1.22	3,266,559	1.06	1.11
Jason South	JSUL_LG	238	12.01	133	12.55	1,705,183	9.49	10.61
	JSUL_HG1	109	182.96	57	186.73	245,142	201.58	192.22
	JSUL_HG2	7	153.05	3	155.15	62,397	152.25	150.65
	JSUL_HG3	25	96.05	13	101.23	125,308	102.65	94.81
	JSUL_FW	13	5.58	9	5.69	347,877	7.27	6.88
	JSLL_LG	369	8.19	202	8.20	2,528,338	8.38	8.60
	JSLL_HG1	54	68.83	29	70.51	87,278	65.33	70.40
	JSLL_HG2	31	67.14	18	69.18	86,106	69.54	74.63
Ba %	•	•		•				
Jason Main	JSMZ	671	10.05	373	10.36	3,266,559	11.46	10.67
Jason South	JSUL	366	13.37	196	13.45	2,138,030	14.44	13.62
	JSLL	442	15.37	238	15.43	2,701,722	13.54	13.46
	JSLL2	47	12.58	22	12.62	141,977	13.82	10.44
Ge (g/t)								
Jason Main	JSMZ	698	6.85	396	6.86	4,378,873	5.72	5.70
Jason South	JSUL	376	5.76	199	6.03	2,754,485	5.65	5.81
	JSUL_FW	13	0.33	9	0.34	347,877	0.29	0.28
	JSLL	454	2.07	245	2.07	2,953,638	2.18	2.17
	JSLL2	47	5.17	22	5.15	224,437	5.04	5.56
Ga (g/t)	•	•		•				
Jason Main	JSMZ	698	3.72	396	3.72	4,378,873	2.89	3.03
Jason South	JSUL	376	2.98	199	3.12	2,754,485	2.97	2.82
	JSUL_FW	13	0.17	9	0.18	347,877	0.15	0.15
	JSLL	454	1.08	245	1.09	2,953,638	1.18	1.14
	JSLL2	47	8.73	22	8.72	224,437	8.69	11.01

Figure 14-45: Jason South – JSUL – Lead Blocks Versus Composites

Figure 14-46: Jason South – JSUL and JSLL – Silver Blocks Versus Composites

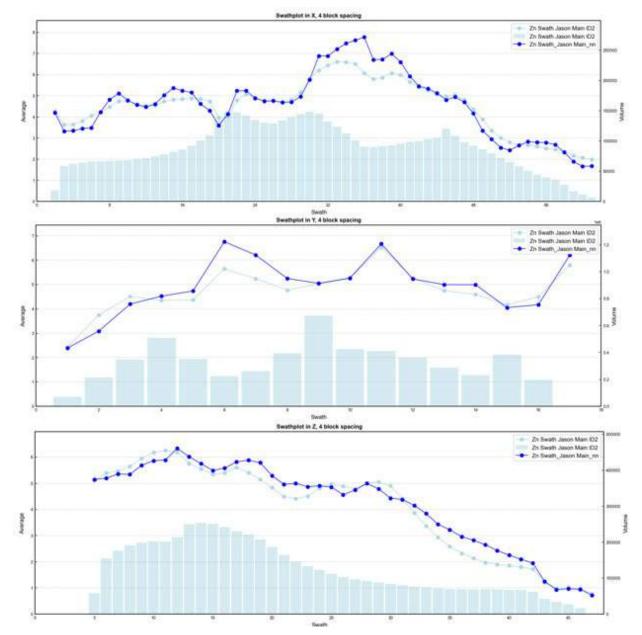
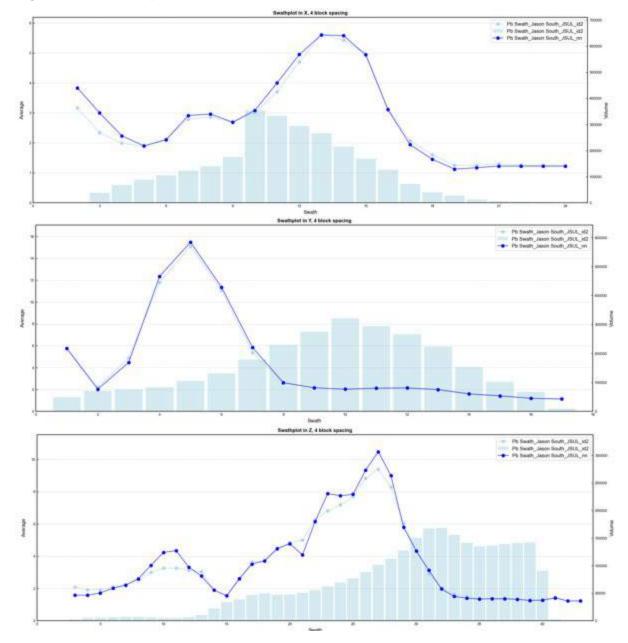
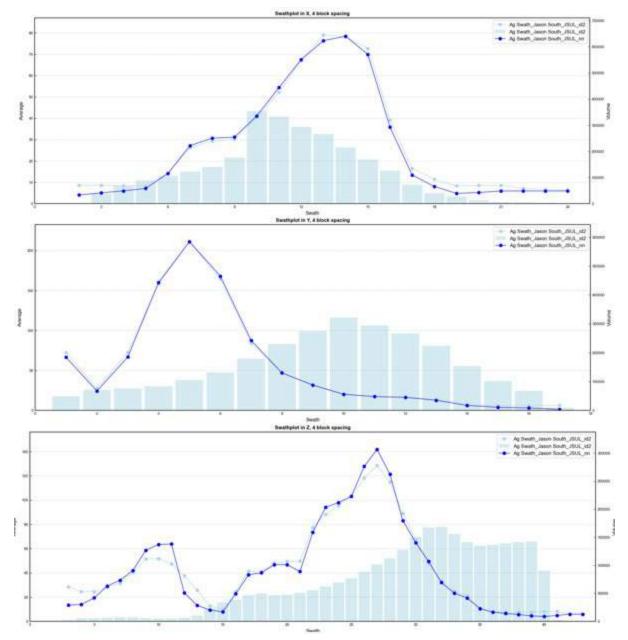




Figure 14-47: Example Swath Plots for Zinc ID² and Zinc NN, in Jason Main

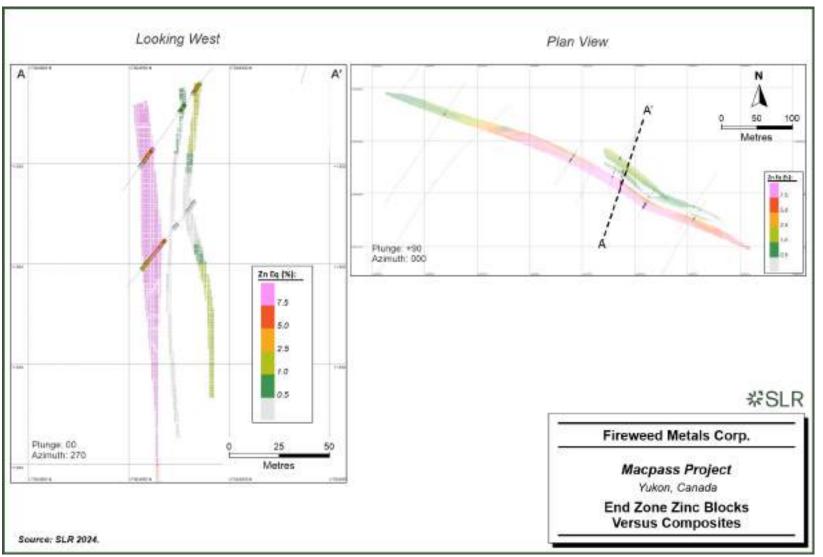

Figure 14-48: Example Swath Plots for Lead ID² and Lead NN, in Jason South - JSUL

Figure 14-49: Example Swath Plots for Silver ID² and Silver NN, in Jason South - JSUL

Area	Domain	Capped Assay Count	Capped Assays	Composite Count	Composite	Parent Block Count	NN	ID ²
Zn (%)								
End Zone	EZUL	20	1.09	14	1.13	77,117	0.89	0.96
	EZML	18	0.19	17	0.19	142,100	0.15	0.14
	EZLL	98	2.51	49	2.53	325,453	1.97	2.11
Pb (%)	•				· · ·			
End Zone	EZUL	20	0.01	14	0.01	77,117	0.01	0.01
	EZML	18	0.19	17	0.19	142,100	0.20	0.21
	EZLL	98	8.43	49	8.57	325,453	6.84	7.15
Ag (g/t)								
End Zone	EZUL	20	1.02	14	1.02	77,117	0.93	0.89
	EZML	18	3.58	17	3.58	142,100	3.77	3.84
	EZLL	98	60.80	49	61.73	325,453	49.69	51.45
Ba (%)	·						·	
End Zone	EZUL	20	0.04	14	0.04	77,117	0.05	0.05
	EZML	18	0.07	17	0.07	142,100	0.08	0.08
	EZLL	97	0.07	49	0.07	325,453	0.12	0.12
Ge (g/t)	•				· · ·			
End Zone	EZUL	20	1.82	14	1.85	77,852	1.32	1.35
	EZML	18	0.39	17	0.39	143,325	0.30	0.28
	EZLL	98	3.21	49	3.18	389,573	2.59	2.78
Ga (g/t)				•	· · ·		•	
End Zone	EZUL	20	2.22	14	2.25	77,852	1.70	1.58
	EZML	18	1.47	17	1.47	.47 143,325		1.26
	EZLL	98	5.12	49	5.05	389,573	4.30	4.35

Table 14-75: End Zone Assay, Composite, and Block Comparisons

Figure 14-50: End Zone Zinc Blocks Versus Composites

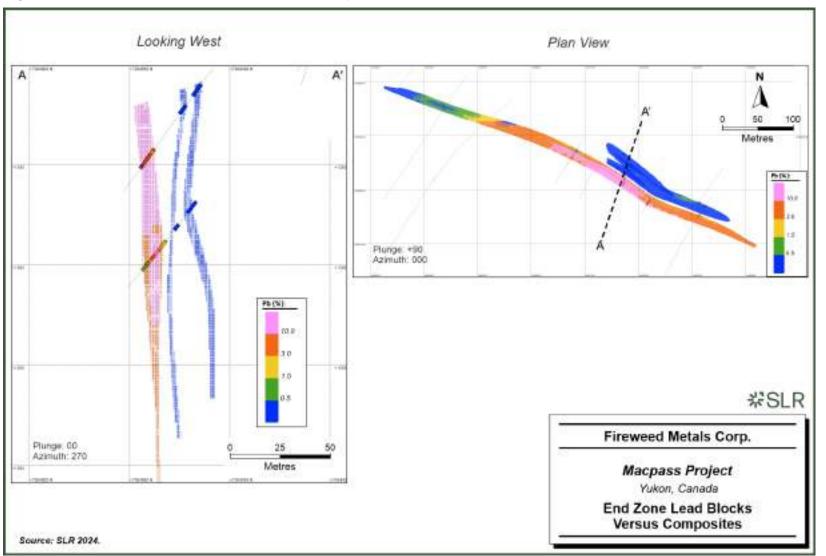


Figure 14-51: End Zone Lead Blocks Versus Composites

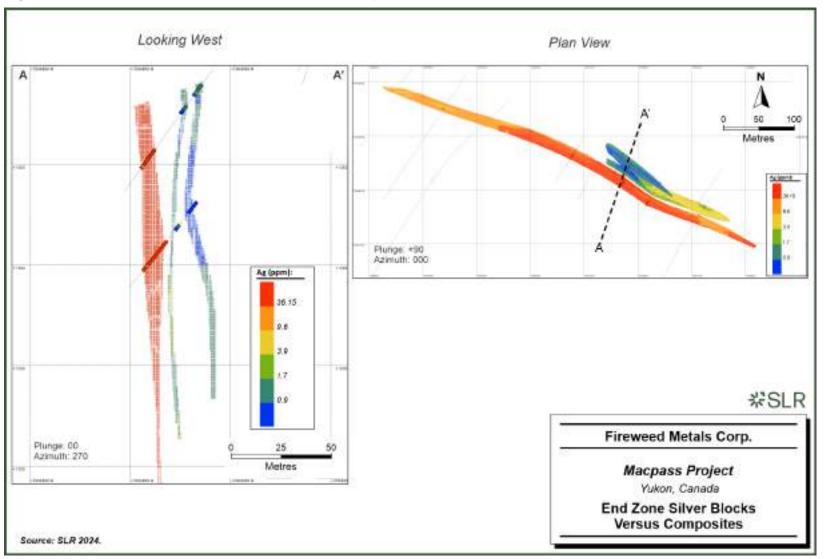


Figure 14-52: End Zone Silver Blocks Versus Composites

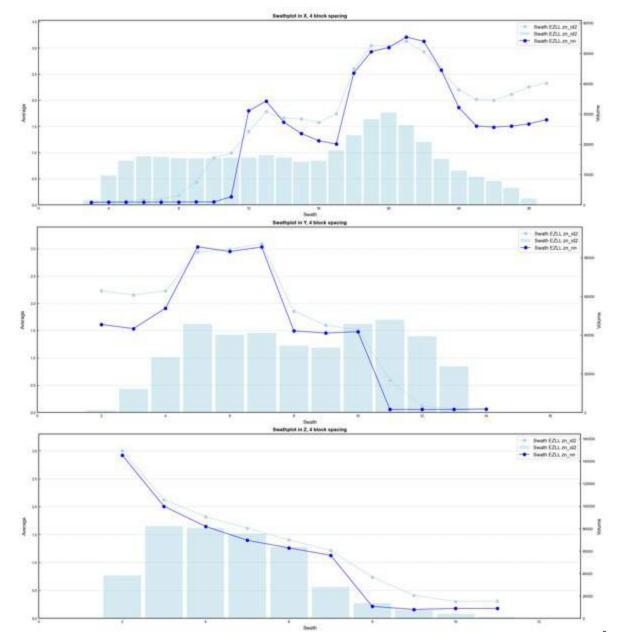
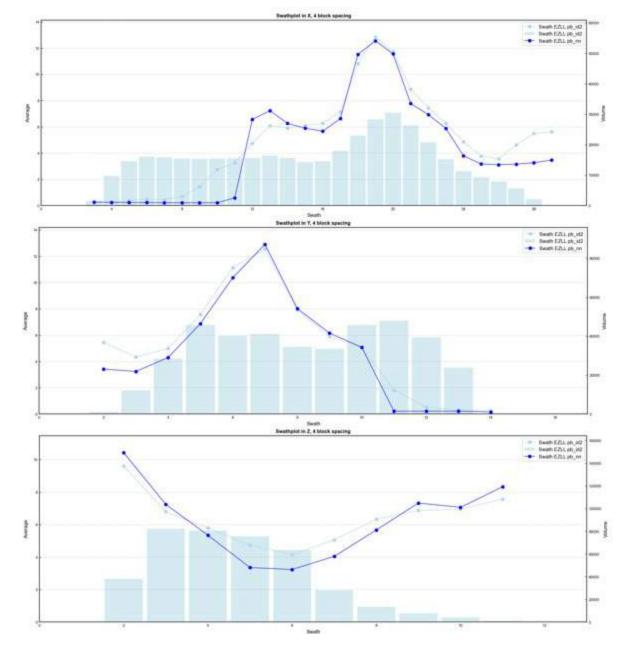
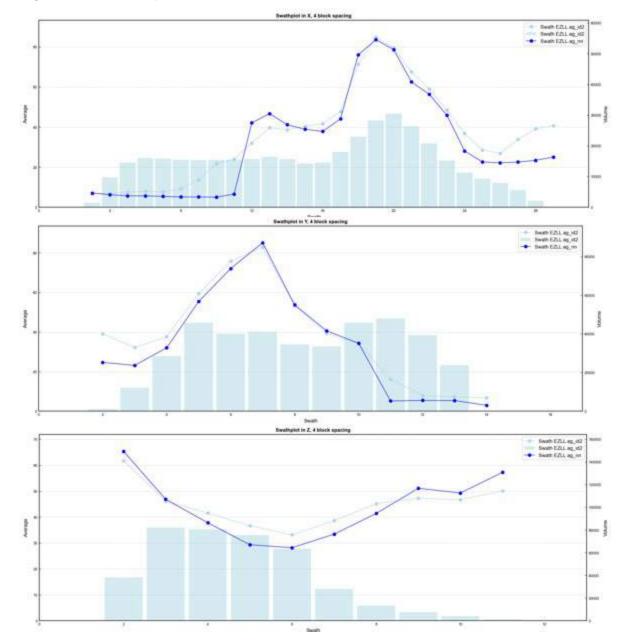
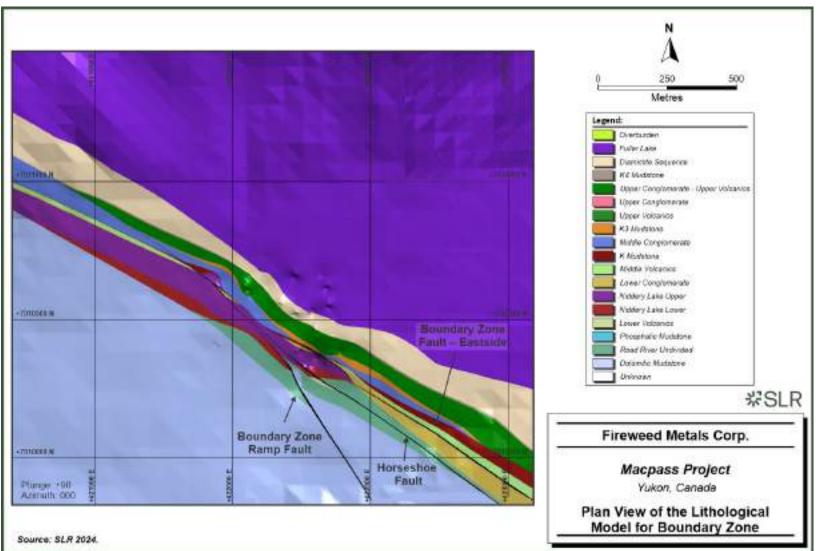
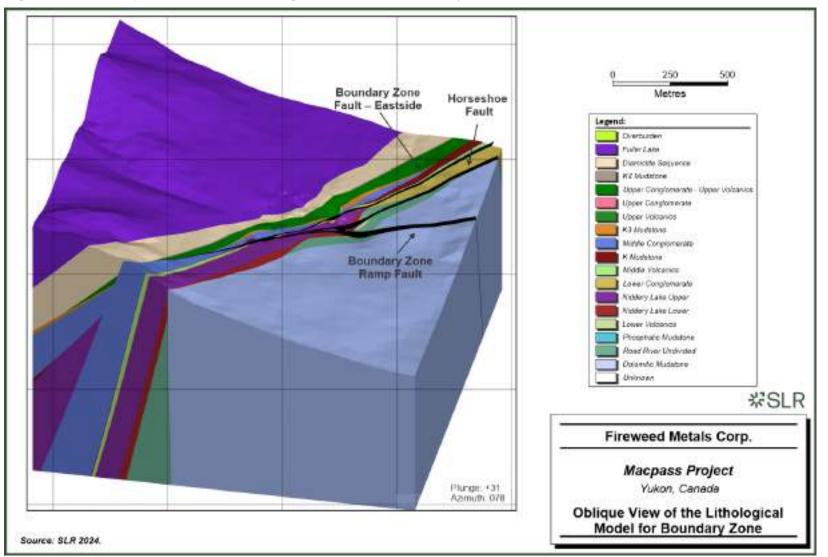




Figure 14-53: Example Swath Plots for Zinc ID² and Zinc NN, in EZLL




14.5 Boundary Zone Deposit

14.5.1 Geological Interpretation

Based on Fireweed's interpretation of the lithological logging, SLR constructed a 3D lithological model for the Boundary Zone deposit that was separated into four blocks by the Boundary Zone-Eastside, Ramp, and Horseshoe faults (Figure 14-56 and Figure 14-57).

Figure 14-57: Oblique View of the Lithological Model for Boundary Zone

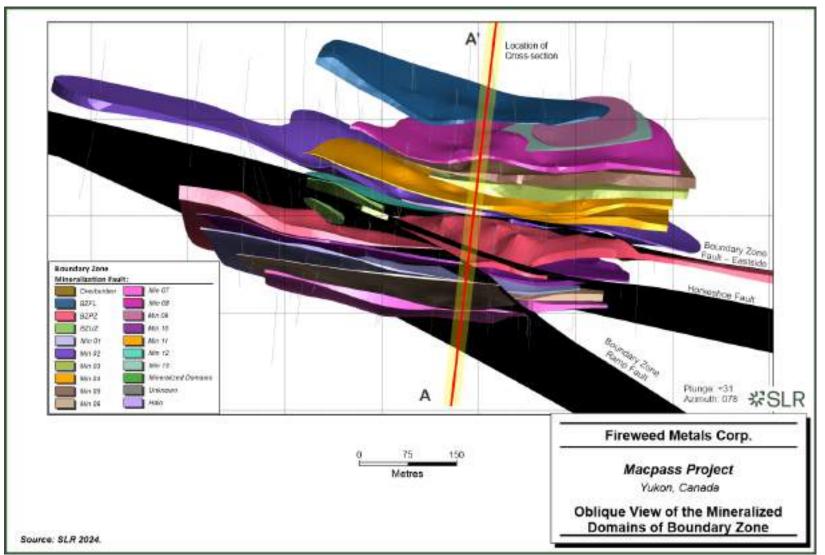
A total of 15 lithological units were defined (Table 14-76). In collaboration with Fireweed staff, SLR developed these units based on primary and secondary lithology logging codes. In several cases, Fireweed's multi-element analytical data was utilized to delineate marker units characterized by distinct geochemical signatures and lithological combinations, allowing correlation across drill holes. Key marker units include conglomerates, potassium-rich mudstones, as well as the Fuller Lake and Dolomitic Mudstone formations.

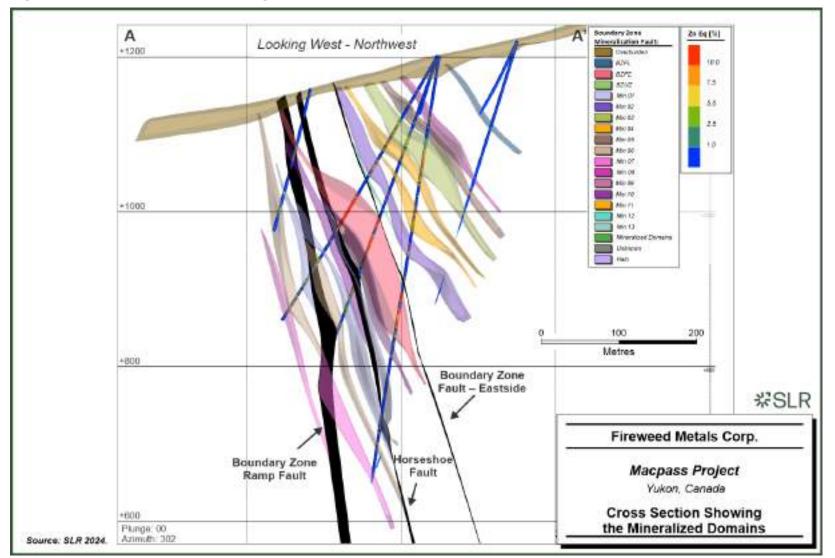
Lithology
Litilology
Overburden
Fuller Lake
Diamictite Sequence
K4 Mudstone
Upper Conglomerate and Upper Volcanics
K3 Mudstone
Middle Conglomerate
K Mudstone
Middle Volcanics
Lower Conglomerate
Niddery Lake Upper
Lower Volcanics
Road River (undivided)
Niddery Lake Lower
Dolomitic Mudstone

Table 14-76:	Modelled Lithological Units for Boundary Zone
--------------	---

14.5.2 Estimation Domains

A total of 17 mineralization domains were constructed by SLR with input from Fireweed staff, using the same geological framework as the Boundary Zone lithological model (Figure 14-58, Figure 14-59). These domains (also used as estimation domains) were divided into four blocks by the Eastside, Ramp, and Horseshoe faults (Figure 14-58). The estimation domains encompass all three styles of mineralization identified at Boundary Zone: (i) massive sulphide and laminated mineralization, (ii) vein-style mineralization, and (iii) halo-style mineralization.


The massive sulphide and laminated mineralization are represented by three key domains: Boundary Zone Fuller Lake (BZFL), Boundary Zone Upper Zone (BZUZ), and Boundary Zone Prime Zone (BZPZ). These mineralization styles are visually distinct and relatively easy to identify during core logging. BZFL exhibits near-surface stratiform to semi-massive sulphide mineralization within the hanging wall of the Boundary Eastside Fault (Figure 14-58). The BZUZ, located along the intersection of the three modeled faults contains laminated sphalerite, galena, and pyrite. The BZPZ is the thickest and most continuous of the three domains, with varying proportions of pyrite, sphalerite, and galena, increasing in sphalerite and galena concentrations near a feeder structure. It is offset by the Ramp and Horseshoe faults and truncated by the Eastside Fault in the northeast (Figure 14-58).


The vein-style mineralization is divided into 13 domains. There are nine vein-type domains in the hanging wall of the Eastside Fault (upper sequence) and four vein-type domains in the footwall (lower sequence). This style of mineralization is characterized by multiple generations of sphalerite-pyrite-siderite-quartz-galena veins, which generally follow the strike and dip of the stratigraphic units in which they occur. The size of these vein-type domains ranges from 150 m to 900 m in strike length, 150 m to 600 m in down-dip projection, and one metre to 30 m across strike.

Efforts were made to ensure a minimum domain thickness within the domains defining the massive sulphide, laminated, and vein-style mineralization to maintain robust domain modelling for resource estimation.

SLR constructed a Halo domain, which surrounds the most densely mineralized vein-style domains and massive sulphide mineralization, with the core of this domain located just southeast of the intersection of the Eastside, Ramp, and Horseshoe faults. This structural intersection likely plays a critical role in focusing mineralizing fluids, resulting in the higher concentration of both vein and massive sulphide mineralization in this area. The Halo Domain is designed to capture lower grade (0.50% to 1.00% ZnEq, averaging 0.75%) disseminated mineralization and veinlets that occur between the higher grade vein and massive sulphide zones. In some cases, the Halo Domain is also used to account for isolated mineralized drill hole intercepts where there are few nearby holes for correlation. In these instances, the domain serves as a volumetric control to prevent grade smearing during estimation. These areas also represent significant exploration targets, as they remain open along strike and down dip. In addition, grades were estimated in a 150 m buffer around the mineralized domains to populate the block model.

14.5.3 Assay Statistics and Capping

The Zn, Pb, and Ag assays cover most of the drill holes completely; exceptions are historical holes (1980s, 1990s) with selective sampling and lost core. Missing Zn, Pb, and Ag assays were set to half of the detection limit (Zn, Pb: 0.005%, Ag: 0.25 g/t). Missing Ba assays were ignored; missing Ga and Ge assays were treated as detailed in Section 14.5.5. A small number of unsampled intervals were ignored for compositing, including segments with core loss, unsampled portions of wedge holes, and unsampled abandoned holes.

Appropriate high outlier capping levels for the Boundary Zone deposit were determined for each domain via analysis of assay population histograms, log probability plots, coefficient of variation (CV), and visual inspection of outliers in 3D (Table 14-77). Statistics for the original and capped assays by domain are compiled in Table 14-78 to Table 14-83

Table 14-83. Capping was performed prior to compositing.

Domain			Cappi	ng Level		
	Zn (%)	Pb (%)	Ag (g/t)	Ba (%)	Ga (g/t)	Ge (g/t)
BZFL	-	5	45	-	30	25
BZPZ	40	-	265	-	55	105
BZUZ	40	10	155	-	-	40
Min01	-	10	85	-	30	35
Min02	45	5	80	-	30	65
Min03	35	-	70	5	30	35
Min04	30	-	55	1	25	30
Min05	-	-	-	1	-	25
Min06	-	10	115	-	25	30
Min07	-	-	60	-	25	30
Min08	-	-	30	-	20	25
Min09	-	-	-	-	-	-
Min10	-	10	60	5	25	30
Min11	40	-	75	-	25	60
Min12	15	-	40	-	-	-
Min13	-	-	-	-	-	-
Halo	15	10	40	15	25	30
Buffer	15	2	30	-	30	30

 Table 14-77:
 Capping Levels for Boundary Zone

Domain	Count	Cap (% Zn)	Number Capped	Mean (% Zn)	Capped Mean (% Zn)	Max. (% Zn)	Capped Max. (% Zn)	CV	Capped CV	Metal Loss
BZFL	84	-	0	4.99	4.99	32.53	32.53	1.28	1.28	0.0%
BZPZ	2,174	40	9	7.17	7.14	52.10	40.00	1.13	1.11	-0.4%
BZUZ	259	40	4	6.77	6.69	53.00	40.00	1.44	1.41	-1.3%
Min01	534	-	0	3.36	3.36	29.32	29.32	1.26	1.26	0.0%
Min02	883	45	0	5.54	5.49	60.00	45.00	1.60	1.56	-1.0%
Min03	598	35	3	5.32	5.28	45.70	35.00	1.14	1.10	-0.7%
Min04	447	30	6	3.72	3.61	46.90	30.00	1.56	1.42	-3.0%
Min05	324	-	0	3.69	3.69	31.91	31.91	1.21	1.21	0.0%
Min06	433	-	0	3.41	3.41	21.62	21.62	1.10	1.10	0.0%
Min07	284	-	0	2.39	2.39	17.82	17.82	1.09	1.09	0.0%
Min08	239	-	0	3.25	3.25	16.53	16.53	0.93	0.93	0.0%
Min09	26	-	0	2.35	2.35	8.97	8.97	0.95	0.95	0.0%
Min10	453	-	0	2.50	2.50	24.76	24.76	1.25	1.25	0.0%
Min11	429	40	6	4.67	4.61	50.80	40.00	1.67	1.62	-1.2%
Min12	82	15	2	2.69	2.47	57.10	15.00	1.72	1.11	-8.3%
Min13	29	-	0	3.15	3.15	12.69	12.69	0.79	0.79	0.0%
Halo	3,598	15	9	0.61	0.60	32.40	15.00	2.53	2.33	-1.8%

Table 14-78: Boundary Zone, Uncapped and Capped Zinc Assay Statistics

Domain	Count	Cap (% Pb)	Number Capped	Mean (% Pb)	Capped Mean (% Pb)	Max. (% Pb)	Capped Max. (% Pb)	CV	Capped CV	Metal Loss
BZFL	84	5	1	0.30	0.26	10.24	5.00	3.38	2.55	-13.3%
BZPZ	2,174	-	0	1.10	1.10	21.42	21.42	1.84	1.84	0.0%
BZUZ	259	10	4	1.19	1.17	12.86	10.00	1.64	1.59	-1.4%
Min01	534	10	6	0.39	0.35	16.73	10.00	3.93	3.38	-9.8%
Min02	883	5	4	0.11	0.10	11.40	5.00	5.28	4.63	-7.7%
Min03	598	-	0	0.04	0.04	3.09	3.09	4.15	4.15	0.0%
Min04	447	-	0	0.05	0.05	3.53	3.53	3.92	3.92	0.0%
Min05	324	-	0	0.04	0.04	2.41	2.41	4.39	4.39	0.0%
Min06	433	10	5	0.82	0.77	20.16	10.00	2.42	2.10	-5.8%
Min07	284	-	0	0.19	0.19	5.44	5.44	2.70	2.70	0.0%
Min08	239	-	0	0.03	0.03	0.22	0.22	0.95	0.95	0.0%
Min09	26	-	0	0.05	0.05	0.12	0.12	0.51	0.51	0.0%
Min10	453	10	1	0.31	0.30	15.49	10.00	3.07	2.82	-2.2%
Min11	429	-	0	0.07	0.07	4.09	4.09	4.54	4.54	0.0%
Min12	82	-	0	0.09	0.09	2.04	2.04	3.55	3.55	0.0%
Min13	29	-	0	0.04	0.04	0.09	0.09	0.61	0.61	0.0%
Halo	3,598	10	1	0.06	0.06	17.61	2.00	4.01	2.70	-5.4%

 Table 14-79:
 Boundary Zone, Uncapped and Capped Lead Assay Statistics

Domain	Count	Cap (g/t Ag)	Number Capped	Mean (g/t Ag)	Capped Mean (g/t Ag)	Max. (g/t Ag)	Capped Max. (g/t Ag)	CV	Capped CV	Metal Loss
BZFL	84	45	3	13.28	12.28	131.60	45.00	1.12	0.77	-7.5%
BZPZ	2,174	265	15	41.59	41.01	550.20	265.00	1.18	1.11	-1.4%
BZUZ	259	155	12	41.02	36.86	436.50	155.00	1.34	1.02	-10.1%
Min01	534	85	12	12.00	10.97	200.50	85.00	1.74	1.27	-8.6%
Min02	883	80	17	10.66	9.78	400.00	80.00	2.18	1.55	-8.3%
Min03	598	70	1	8.05	8.04	76.40	70.00	1.16	1.16	-0.1%
Min04	447	55	6	6.47	6.01	130.40	55.00	1.86	1.38	-7.1%
Min05	324	-	0	5.89	5.89	43.80	43.80	1.07	1.07	0.0%
Min06	433	115	5	17.06	16.46	248.70	115.00	1.50	1.32	-3.5%
Min07	284	60	2	7.56	7.38	132.00	60.00	1.33	1.15	-2.4%
Min08	239	30	1	6.04	5.98	54.20	30.00	0.80	0.74	-0.9%
Min09	26	-	0	5.99	5.99	12.00	12.00	0.42	0.42	0.0%
Min10	453	60	4	10.11	9.79	170.10	60.00	1.14	0.90	-3.2%
Min11	429	75	9	11.63	9.18	1000.00	75.00	4.14	1.66	-21.1%
Min12	82	40	2	8.64	5.76	233.60	40.00	3.10	1.49	-33.4%
Min13	29	-	0	6.67	6.67	12.90	12.90	0.51	0.51	0.0%
Halo	3,598	40	12	3.57	3.46	303.80	40.00	1.81	1.25	-2.9%

 Table 14-80:
 Boundary Zone, Uncapped and Capped Silver Assay Statistics

Domain	Count	Cap (% Ba)	Number Capped	Mean (% Ba)	Capped Mean (% Ba)	Max. (% Ba)	Capped Max. (% Ba)	CV	Capped CV	Metal Loss
BZFL	83	-	0	0.52	0.52	3.63	3.63	1.34	1.34	0.0%
BZPZ	2,124	-	0	1.87	1.87	48.28	48.28	3.28	3.28	0.0%
BZUZ	259	-	0	0.47	0.47	3.83	3.83	1.01	1.01	0.0%
Min01	528	-	0	0.29	0.29	2.17	2.17	1.21	1.21	0.0%
Min02	778	-	0	0.19	0.19	4.19	4.19	1.61	1.61	0.0%
Min03	530	5	2	0.12	0.10	10.25	5.00	5.03	3.66	-12.5%
Min04	393	1	0	0.09	0.09	3.14	1.00	2.11	1.31	-7.0%
Min05	282	1	0	0.07	0.06	4.95	1.00	3.46	1.28	-13.5%
Min06	406	-	0	0.17	0.17	1.23	1.23	0.95	0.95	0.0%
Min07	268	-	0	0.18	0.18	4.15	4.15	1.62	1.62	0.0%
Min08	213	-	0	0.06	0.06	0.36	0.36	0.97	0.97	0.0%
Min09	22	-	0	0.05	0.05	0.13	0.13	0.60	0.60	0.0%
Min10	437	5	2	0.39	0.39	7.15	5.00	1.28	1.22	-0.5%
Min11	389	-	0	0.11	0.11	4.42	4.42	2.31	2.31	0.0%
Min12	76	-	0	0.42	0.42	7.74	7.74	2.41	2.41	0.0%
Min13	25	-	0	0.05	0.05	0.21	0.21	1.02	1.02	0.0%
Halo	3355	15	0	0.33	0.33	12.60	12.60	2.37	2.37	0.0%

 Table 14-81:
 Boundary Zone, Uncapped and Capped Barium Assay Statistics

Domain	Count	Cap (Ge g/t)	Number Capped	Mean (Ge g/t)	Capped Mean (Ge g/t)	Max. (Ge g/t)	Capped Max. (Ge g/t)	CV	Capped CV	Metal
BZFL	73	25	19	14.7	10.1	143.0	25.0	1.5	1.0	-31.6%
BZPZ	1,877	105	16	19.7	19.4	19.4 245.0		1.1	1.1	-1.5%
BZUZ	227	40	53	25.0	16.7	16.7 197.0		1.4	0.8	-33.3%
Min01	461	35	7	9.1	8.9	89.0	35.0	0.9	0.8	-1.7%
Min02	729	65	70	21.4	16.3	368.0	65.0	1.8	1.2	-24.0%
Min03	516	35	33	13.1	11.0	144.0	35.0	1.3	0.8	-16.0%
Min04	366	30	39	12.4	9.3	317.0	30.0	1.8	1.0	-25.1%
Min05	264	25	18	9.2	8.2	71.0	25.0	1.1	0.8	-10.9%
Min06	375	30	23	10.7	9.8	126.0	30.0	1.1	0.8	-8.7%
Min07	244	30	3	7.7	7.6	64.0	30.0	1.0	0.9	-2.0%
Min08	203	25	1	6.1	6.1	31.0	25.0	0.8	0.8	-0.4%
Min09	21	-	0	2.7	2.7	8.0	8.0	0.5	0.5	0.0%
Min10	387	30	7	8.1	8.0	50.0	30.0	0.9	0.8	-1.6%
Min11	322	60	30	18.3	15.0	161.0	60.0	1.5	1.1	-18.3%
Min12	66	-	0	6.6	6.6	42.0	42.0	1.3	1.3	0.0%
Min13	25	-	0	4.9	4.9	31.0	31.0	1.1	1.1	0.0%
Halo	1,952	30	20	4.1	4.0	69.0	30.0	1.2	1.1	-2.3%

Table 14-82: Boundary Zone, Uncapped and Capped Germanium Assay Statistics

Domain	Count	Cap (Ga g/t)	Number Capped	Mean (Ga g/t)	Capped Mean (Ga g/t)	Max. (Ga g/t)	Capped Max. (Ga g/t)	CV	Capped CV	Metal Loss
BZFL	83	30	7	13.5	12.3	86.0	30.0	0.9	0.7	-8.8%
BZPZ	2,124	55	7	10.0	10.0	119.0	55.0	0.8	0.8	-0.6%
BZUZ	259	-	0	10.8	10.8	28.0	28.0	0.5	0.5	0.0%
Min01	527	30	3	10.0	10.0	10.0 35.0		0.6	0.6	-0.1%
Min02	774	30	1	8.3	8.3	36.0	36.0	0.6	0.6	0.0%
Min03	529	30	2	9.0	9.0	36.0	30.0	0.5	0.5	-0.1%
Min04	392	25	6	7.1	6.9	71.0	25.0	0.8	0.6	-2.9%
Min05	280	-	0	8.4	8.4	23.0	23.0	0.4	0.4	0.0%
Min06	402	25	6	9.7	9.6	33.0	25.0	0.5	0.5	-0.7%
Min07	266	25	1	8.6	8.6	33.0	33.0	0.5	0.5	0.0%
Min08	210	20	2	7.7	7.6	29.0	20.0	0.5	0.5	-0.9%
Min09	21	-	0	6.0	6.0	13.0	13.0	0.5	0.5	0.0%
Min10	437	25	7	8.8	8.8	33.0	25.0	0.6	0.6	-0.4%
Min11	387	25	7	7.4	7.3	49.0	25.0	0.7	0.7	-1.5%
Min12	76	-	0	6.7	6.7	26.0	26.0	0.7	0.7	0.0%
Min13	25	-	0	6.7	6.7	11.0	11.0	0.4	0.4	0.0%
Halo	3,347	25	7	5.5	5.5	45.0	25.0	0.8	0.8	-0.3%

Table 14-83: Boundary Zone, Uncapped and Capped Gallium Assay Statistics

14.5.4 Density

The drill hole database for Boundary Zone provides comprehensive spatial coverage of measured density values, with more recent drilling (from 2019) contributing the majority of the data. In contrast, many of the historical drillholes (1983-1991) at Boundary Zone lack measured density values.

To address gaps in the dataset, Fireweed developed a regression formula to estimate bulk density for unmeasured samples. This formula was based on a correlation between bulk density and assay data from zinc, lead, barium, iron, and copper concentrations in samples collected between 2019 and 2023. The following regression equation was derived from this analysis:

Bulk Density = 0.0342 * (Fe + Zn + Pb + Ba + Cu) + 2.54

The SLR QP reviewed the regression methodology and determined that the regressed values were appropriate for use in supporting the Mineral Resource estimate.

A total of 10,794 density measurements were collected at Boundary Zone within the mineralized domains with densities ranging from 1.67 g/cm³ to 6.92 g/cm³. A total of 10,513 density measurements were collected at Boundary Zone within the lithological domains (exclusive of mineralized domains and overburden) with densities ranging from 1.65 g/cm³ to 6.31 g/cm³.

In total, approximately 92% of the density values within the geological and mineralization domain wireframes were measured. For any instances where measured or regressed density values were unavailable because samples were unassayed, a default value of 2.89 t/m³, representing the global mean for unmineralized rock, was assigned. Density was interpolated within each mineralized domain using an ID² method, with the same search parameters applied as for grade interpolation. For wall rock, density was interpolated using the same method and search parameters, with missing values assigned the mean density for each lithology. The density of the overburden was set to 1.80 t/m³. The mean measured density values for the estimation domains and lithology domains are presented in Table 14-84 and Table 14-85, respectively.

Estimation Domains	Mean Density (g/cm ³)	Estimation Domains	Mean Density (g/cm³)
BZPZ	3.72	Min07	3.21
BZFL	3.05	Min08	3.26
BZUZ	3.25	Min09	3.33
Min01	3.31	Min10	3.21
Min02	2.92	Min11	2.89
Min03	3.08	Min12	2.89
Min04	2.87	Min13	3.26
Min05	3.23	Halo	2.99
Min06	3.44		

Table 14-84: Boundary Zone Estimation Domains Mean Measured Density Values

Lithology Domains	Mean Density (g/cm ³)
Diamictite Sequence	3.00
Middle Conglomerate	2.81
Niddery Lake Upper	2.81
Fuller Lake	2.79
Upper Conglomerate-Upper Volcanics	2.97
Niddery Lake Lower	3.01
Road River Undivided	2.95
Lower Volcanics	3.14
Middle Volcanics	3.37
Lower Conglomerate	2.93
K Mudstone	2.78
K3 Mudstone	2.77
K4 Mudstone	2.89
Dolomitic Mudstone	2.77

As new drilling data become available and additional density measurements are incorporated into the Boundary Zone dataset, the SLR QP recommends periodically reviewing the regression formula for potential improvements to enhance the accuracy of local density estimates.

14.5.5 Germanium and Gallium

For gallium and germanium, the assay data are incomplete. Based on correlation analyses for the mineralized domains, trace amounts of gallium may substitute for zinc in the sphalerite structure, and for aluminum in various aluminosilicate minerals. Germanium is mainly hosted as a trace element in sphalerite. In order to allow grade interpolation of the same volumes as for zinc, lead, and barium, prior to capping and compositing, missing values were calculated for the three mineralization styles (massive sulfide, vein, disseminated) based on regressions of gallium and germanium with zinc plus aluminum and zinc, respectively.

An example germanium scatterplot for Boundary Zone used to calculate the regression equation for the massive sulphide domain mineralization type is shown in Figure 14-60. The regression equations per mineralization type for both germanium and gallium are outlined in Table 14-86. Table 14-87 and Table 14-88 show the assay statistics of the regressed germanium and gallium values, respectively, for each domain at the Boundary Zone deposit.

For the final germanium and gallium variables used to create composites for the Boundary Zone deposit, measured values (Table 14-82 and Table 14-83) were prioritized, followed by regressed values. The values reported in Table 14-87 and Table 14-88 provide the assay statistics for regressed germanium and gallium, respectively, excluding measured values.

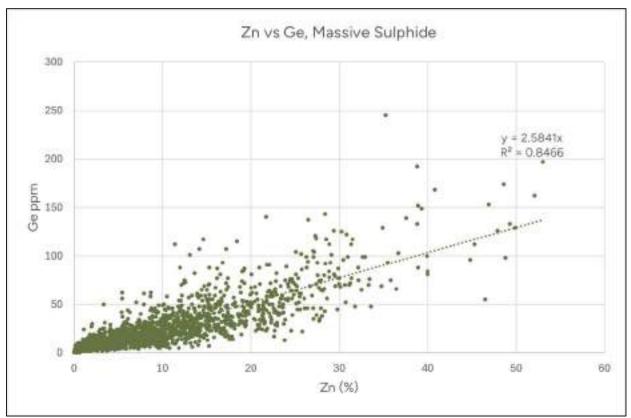


Figure 14-60: Scatterplot of Zinc Compared to Germanium Within Boundary Zone

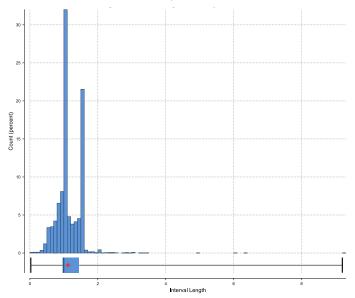
 Table 14-86:
 Boundary Zone Germanium and Gallium Regression Equations

Mineralization Type	Element	Domain	Regression Equation	R-squared Value
Boundary	Ge	Massive Sulphide	y = 2.584x	0.8466
		Vein	$y = 0.0232x^2 + 2.3762x$	0.7393
		Disseminated	y = 0.0004x ³ + 0.0042x ² + 2.0974x	0.7169
	Ga	Massive Sulphide	y = 0.967x	0.7733
		Vein	y = 0.0009x ³ + 0.0775x ² + 2.0187x	0.5177
		Disseminated	y = 2.312x	0.899

Table 14-87:	Boundary Zone Regressed Germanium Assay Statistics by Mineralization
	Туре

AREA	Domain	Count	Length (m)	Mean (Ge g/t)	CV ¹	Min (Ge g/t)	Max (Ge g/t)
Boundary	Massive Sulphide	341	396.77	10.3	2.0	0.0	125.6
	Vein	790	1,019.91	7.1	1.9	0.0	190.6
	Disseminated	1,647	2,168.16	0.3	5.0	0.0	56.4

Table 14-88:Table Boundary Zone Regressed Gallium Assay Statistics by MineralizationType


Area	Domain	Count	Length (m)	Mean (Ge g/t)	CV ¹	Min (Ge g/t)	Max (Ge g/t)
Boundary	Massive Sulphide	52	103.91	2.3	2.4	0.0	47.0
	Vein	443	659.17	5.1	0.9	0.0	23.1
	Disseminated	252	494.99	1.3	2.9	0.0	54.0

14.5.6 Compositing

The most common sample lengths in the mineralized domains are one metre (32%) and 1.5 m (22%) (Figure 14-61). A composite length of 1.5 m was chosen, allowing automatic adjustments to length to avoid short intervals at the end of compositing intervals. The composite lengths are thus variable, but approximate 1.5 m. The composites were weighted by length and density. The composites were created within the entire mineralized domains (across fault blocks) to allow the use of soft boundaries in some cases and for the entire intercept length for each domain. Statistics for the composites were validated globally against the length-weighted means and the total length of the capped assays for each domain.

Table 14-95 shows the difference in length between composites and capped assays.

Figure 14-61: Histogram of the Assay Interval Lengths Within the Mineralization Domains for Boundary Zone

Domain	Count	Length (m)	Mean (%)	CV (%)	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
BZFL	63	94.80	4.96	1.10	0.01	1.01	2.99	8.15	25.13
BZPZ	1,471	2,195.10	7.18	1.03	0.01	1.41	4.59	10.74	39.87
BZUZ	183	275.68	6.87	1.28	0.01	1.20	3.30	8.67	39.67
Min01	399	596.97	3.41	1.14	0.01	0.97	1.90	4.46	26.81
Min02	717	1,070.35	5.55	1.41	0.01	1.20	2.75	6.04	44.92
Min03	456	682.58	5.35	0.96	0.05	1.76	3.58	7.36	33.73
Min04	377	563.84	3.63	1.24	0.01	1.03	1.92	4.33	30.00
Min05	260	384.10	3.71	1.05	0.01	1.14	2.50	4.92	27.97
Min06	329	496.12	3.46	0.94	0.01	1.13	2.41	4.71	20.11
Min07	215	321.57	2.41	0.92	0.01	0.92	1.56	3.45	13.04
Min08	185	281.43	3.27	0.81	0.01	1.38	2.63	4.29	13.03
Min09	23	34.19	2.40	0.86	0.34	0.62	1.78	3.94	8.24
Min10	356	533.30	2.51	1.12	0.01	0.82	1.74	2.94	20.47
Min11	328	492.28	4.71	1.41	0.01	0.85	2.22	4.99	40.00
Min12	70	103.45	2.54	0.90	0.03	1.00	1.52	3.40	11.35
Min13	26	38.45	3.10	0.72	0.71	1.71	2.58	4.13	11.19
Halo	3,105	4,659.25	0.61	1.95	0.00	0.05	0.22	0.63	13.63

Table 14-89: Boundary Zone Zinc Composite Statistics

Domain	Count	Length (m)	Mean (%)	CV (%)	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
BZFL	63	94.80	0.26	2.05	0.02	0.04	0.06	0.11	3.15
BZPZ	1,471	2,195.10	1.11	1.70	0.01	0.14	0.43	1.22	18.09
BZUZ	183	275.68	1.20	1.43	0.02	0.22	0.58	1.36	10.00
Min01	399	596.97	0.36	2.80	0.01	0.04	0.08	0.19	8.88
Min02	717	1,070.35	0.10	4.22	0.00	0.01	0.01	0.05	4.95
Min03	456	682.58	0.04	3.91	0.00	0.01	0.02	0.03	3.09
Min04	377	563.84	0.05	3.20	0.00	0.01	0.01	0.02	1.76
Min05	260	384.10	0.04	4.35	0.00	0.01	0.02	0.03	2.41
Min06	329	496.12	0.79	1.89	0.01	0.06	0.14	0.78	8.50
Min07	215	321.57	0.19	2.31	0.01	0.03	0.06	0.15	3.73
Min08	185	281.43	0.03	0.90	0.01	0.01	0.02	0.04	0.19
Min09	23	34.19	0.05	0.50	0.01	0.03	0.04	0.06	0.12
Min10	356	533.30	0.30	2.55	0.01	0.05	0.08	0.22	9.70
Min11	328	492.28	0.07	4.03	0.00	0.01	0.01	0.03	3.27
Min12	70	103.45	0.09	3.10	0.00	0.01	0.01	0.04	2.04
Min13	26	38.45	0.04	0.60	0.01	0.02	0.03	0.05	0.07
Halo	3,105	4,659.25	0.06	2.47	0.00	0.01	0.02	0.05	2.00

 Table 14-90:
 Boundary Zone Lead Composite Statistics

Domain	Count	Length (m)	Mean (g/t)	CV (g/t)	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
BZFL	63	94.80	12.2	0.7	1.9	5.5	10.4	16.3	33.5
BZPZ	1,471	2,195.10	41.2	1.0	0.9	12.4	26.5	54.1	265.0
BZUZ	183	275.68	37.5	0.9	2.2	12.7	28.0	44.7	155.0
Min01	399	596.97	11.1	1.1	0.3	4.3	7.3	12.4	85.0
Min02	717	1,070.35	9.9	1.4	0.3	2.2	4.7	10.5	80.0
Min03	456	682.58	8.2	1.0	0.2	2.8	5.7	10.5	60.9
Min04	377	563.84	6.1	1.2	0.2	2.0	3.6	6.6	55.0
Min05	260	384.10	5.9	1.0	0.3	2.6	3.9	6.7	37.7
Min06	329	496.12	16.8	1.2	1.5	5.3	8.8	18.0	104.1
Min07	215	321.57	7.5	1.0	0.9	3.2	5.5	8.7	50.3
Min08	185	281.43	6.0	0.7	0.3	3.1	5.1	8.0	21.5
Min09	23	34.19	6.1	0.4	2.0	4.2	5.8	7.7	11.5
Min10	356	533.30	9.8	0.8	1.0	5.0	7.1	11.7	60.0
Min11	328	492.28	9.4	1.4	0.3	1.8	3.7	9.8	75.0
Min12	70	103.45	5.9	1.2	0.3	1.6	3.5	6.5	35.7
Min13	26	38.45	6.7	0.5	1.7	3.7	5.9	9.3	12.5
Halo	3,105	4,659.25	3.5	1.1	0.2	1.2	2.2	4.2	39.7

 Table 14-91:
 Boundary Zone Silver Composite Statistics

Domain	Count	Length (m)	Mean (%)	CV (%)	Min (%)	Q1 (%)	Median (%)	Q3 (%)	Max (%)
BZFL	62	92.80	0.51	1.24	0.03	0.16	0.22	0.53	2.80
BZPZ	1,422	2,122.50	1.86	3.10	0.01	0.05	0.20	0.75	44.74
BZUZ	183	275.68	0.46	0.89	0.01	0.12	0.37	0.67	1.92
Min01	392	585.48	0.29	1.18	0.01	0.08	0.18	0.31	2.01
Min02	621	925.97	0.18	1.46	0.01	0.04	0.07	0.20	2.83
Min03	390	584.63	0.10	2.92	0.01	0.03	0.05	0.08	3.37
Min04	325	486.76	0.09	1.17	0.01	0.04	0.06	0.10	1.00
Min05	220	325.43	0.06	0.89	0.01	0.03	0.05	0.07	0.49
Min06	304	459.30	0.17	0.86	0.01	0.07	0.13	0.22	0.88
Min07	199	297.77	0.18	1.30	0.01	0.07	0.14	0.22	2.18
Min08	159	242.46	0.06	0.91	0.01	0.03	0.04	0.08	0.36
Min09	20	29.99	0.05	0.59	0.01	0.03	0.04	0.06	0.13
Min10	342	511.30	0.39	1.13	0.02	0.12	0.25	0.48	3.39
Min11	292	438.45	0.11	1.70	0.01	0.04	0.06	0.11	1.87
Min12	64	94.65	0.41	2.38	0.05	0.11	0.17	0.36	7.74
Min13	22	32.95	0.05	1.01	0.01	0.02	0.03	0.07	0.21
Halo	2,832	4,249.03	0.33	2.24	0.01	0.07	0.15	0.29	11.73

 Table 14-92:
 Boundary Zone Barium Composite Statistics

Domain	Count	Length (m)	Mean (g/t)	CV (g/t)	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
BZFL	83	124.11	9.2	1.0	0.0	2.5	7.0	15.7	30.0
BZPZ	1,471	2,195.10	9.7	0.7	0.0	5.0	8.3	12.5	53.6
BZUZ	183	275.68	10.8	0.5	2.5	7.3	10.6	14.1	26.9
Min01	399	596.97	9.8	0.5	0.0	6.4	9.0	12.8	29.4
Min02	735	1,097.29	7.6	0.6	0.0	4.0	6.3	10.2	28.7
Min03	456	682.58	8.5	0.5	0.1	5.1	7.8	11.1	25.0
Min04	378	565.43	6.6	0.6	0.0	4.0	5.8	8.1	25.0
Min05	260	384.10	8.6	1.0	0.0	3.6	6.0	10.7	62.9
Min06	329	496.12	9.3	0.5	0.2	6.4	8.9	11.7	25.0
Min07	215	321.57	8.2	0.5	0.2	4.2	8.3	11.8	21.3
Min08	185	281.43	7.4	0.5	0.0	4.9	6.8	9.8	18.8
Min09	23	34.19	3.5	0.8	1.0	2.0	2.5	3.6	11.0
Min10	356	533.30	8.6	0.6	1.5	5.0	8.0	11.0	25.0
Min11	328	492.28	7.2	0.6	0.1	3.6	6.0	9.9	25.0
Min12	70	103.45	5.8	1.2	0.1	1.0	3.4	8.1	34.6
Min13	26	38.45	5.6	0.9	1.8	3.0	3.9	6.5	24.1
Halo	3,149	4,724.98	5.0	0.8	0.0	2.5	3.4	7.0	25.0

Table 14-93: Boundary Zone Gallium Composite Statistics

Domain	Count	Length (m)	Mean (g/t)	CV (g/t)	Min (g/t)	Q1 (g/t)	Median (g/t)	Q3 (g/t)	Max (g/t)
BZFL	83	124.11	9.0	1.0	0.0	0.5	6.0	16.1	25.0
BZPZ	1,471	2,195.10	18.3	1.1	0.0	4.2	11.0	25.9	105.0
BZUZ	183	275.68	14.7	0.9	0.0	4.2	10.1	21.9	40.0
Min01	399	596.97	9.1	0.8	0.0	3.5	6.9	12.0	35.0
Min02	735	1,097.29	14.7	1.1	0.1	4.0	8.0	17.6	65.0
Min03	456	682.58	10.6	0.8	0.1	4.3	7.9	14.3	35.0
Min04	378	565.43	8.6	0.9	0.0	3.0	5.8	10.8	30.0
Min05	260	384.10	7.8	0.7	0.0	3.6	6.0	10.4	25.0
Min06	329	496.12	9.2	0.8	0.0	3.5	7.4	12.6	30.0
Min07	215	321.57	6.8	0.9	0.0	2.7	4.4	8.9	27.7
Min08	185	281.43	6.3	0.8	0.0	3.0	5.0	8.1	25.0
Min09	23	34.19	3.5	0.8	1.0	2.0	2.5	3.6	11.0
Min10	356	533.30	7.1	0.9	0.0	3.0	5.3	9.8	30.0
Min11	328	492.28	13.2	1.1	0.0	3.0	7.3	17.8	60.0
Min12	70	103.45	5.8	1.2	0.1	1.0	3.4	8.1	34.6
Min13	26	38.45	5.6	0.9	1.8	3.0	3.9	6.5	24.1
Halo	3,149	4,724.98	2.3	1.4	0.0	0.1	1.3	3.1	30.0

Table 14-94: Boundary Zone Germanium Composite Statistics

Domain			Length d	ifference (m)		
	Zn	Pb	Ag	Ва	Ga	Ge
BZFL	0.0	0.0	0.0	0.0	0.0	0.0
BZPZ	0.0	0.0	0.0	0.0	0.0	0.0
BZUZ	0.0	0.0	0.0	0.0	0.0	0.0
Min01	0.0	0.0	0.0	1.5	0.0	0.0
Min02	0.0	0.0	0.0	5.0	0.0	0.0
Min03	0.3	0.3	0.3	0.6	0.0	0.0
Min04	0.6	0.6	0.6	2.0	0.0	0.0
Min05	0.0	0.0	0.0	1.6	0.0	0.0
Min06	0.0	0.0	0.0	2.6	0.0	0.0
Min07	0.0	0.0	0.0	0.7	0.0	0.0
Min08	1.0	1.0	1.0	1.0	0.0	0.0
Min09	0.0	0.0	0.0	1.3	0.0	0.0
Min10	0.0	0.0	0.0	0.0	0.0	0.0
Min11	0.0	0.0	0.0	1.4	0.0	0.0
Min12	0.0	0.0	0.0	0.0	0.0	0.0
Min13	0.0	0.0	0.0	0.0	0.0	0.0
Halo	0.0	0.0	0.0	10.7	0.0	0.0

 Table 14-95:
 Boundary Zone Length Difference Between Composites and Capped Assays

14.5.7 Trend Analysis

14.5.7.1 Variography

Variography was performed by domain for each element to inform the dimensions and directions of the anisotropic search ellipses used in the ID² interpolations. Examples for modelled variograms and the corresponding composite data are presented in Figure 14-62 to Figure 14-65.

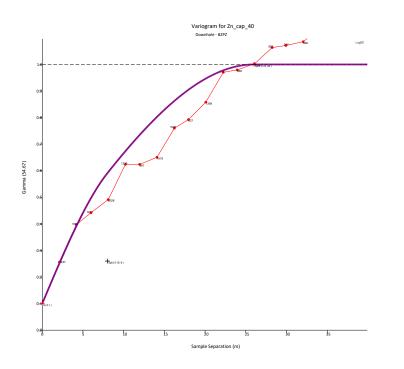
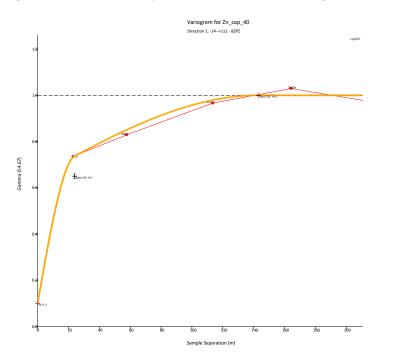



Figure 14-63: Zinc Major Direction Semi-Variogram for the BZPZ Domain

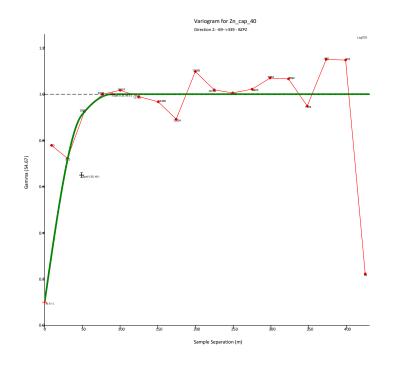
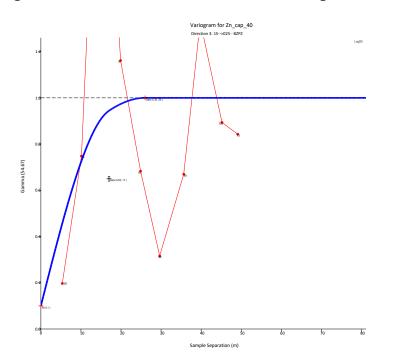



Figure 14-64: Zinc Semi-Major Direction Semi-Variogram for the BZPZ Domain

Figure 14-65: Zinc Minor Direction Semi-Variogram for the BZPZ Domain

14.5.7.2 Grade Contouring

Grade contouring within each domain was carried out for the Boundary Zone. This allowed customization of the directional anisotropy of the mineralization for each domain. The outputs of the grade contouring were used to aid initial variogram and search ellipse orientations and to help validate the block model.

14.5.8 Search Strategy and Grade Interpolation Parameters

Grades were interpolated on parent blocks using ID² and variable anisotropy based on the domain wireframes within each mineralized domain in three passes. Where smaller offsets between fault blocks were observed, a 50 m soft boundary across fault blocks was used. The wall rock grades were interpolated within a 150 m buffer around the mineralized domains with a variable anisotropy grid guided by the stratigraphic surfaces.

The search ellipse dimensions are provided in Table 14-96 and the number of composites used for interpolation in each pass are listed in Table 14-97. The maximum number of composites per drill hole was set to four.

Spatial outlier restrictions were applied in Passes 2 and 3 for the halo and buffer domains as follows:

- Halo
 - Pass 2: Apply cap levels for samples > 2/3 of the search distance (Zn: 10%, Pb: 5%, Ag: 25 g/t)
 - Pass 3: Apply cap levels for samples > 1/4 of the search distance (Zn: 10%, Pb: 5%, Ag: 25 g/t)
- Buffer
 - Pass 2: Apply cap levels for samples > 2/3 of the search distance (Zn: 5%, Ag: 12.5 g/t)
 - Pass 3: Apply cap levels for samples > 1/4 of the search distance (Zn: 5%, Ag: 12.5 g/t)

Domain	Fault		Search Ellipse Dimensions (m)								
	Block(s)		Pass 1			Pass 2			Pass 3		boundary across fault
		Major	Semi- major	Minor	Major	Semi- major	Minor	Major	Semi- major	Minor	blocks
BZFL	1	40	40	10	60	60	15	160	160	40	-
BZPZ	2, 3, 4	65	40	10	100	60	15	255	160	40	Y
BZUZ	1, 2, 3, 4	40	40	10	60	60	15	160	160	40	N
Min01	2, 3, 4	40	40	10	60	60	15	160	160	40	Y
Min02	1	40	40	10	60	60	15	160	160	40	-
Min03	1	40	40	10	60	60	15	160	160	40	-
Min04	1	40	40	10	60	60	15	160	160	40	-
Min05	1	40	40	10	60	60	15	160	160	40	-
Min06	2, 4	40	40	10	60	60	15	160	160	40	Y
Min07	2, 4	40	40	10	60	60	15	160	160	40	N
Min08	1	40	40	10	60	60	15	160	160	40	-
Min09	1	40	40	10	60	60	15	160	160	40	-
Min10	2, 3, 4	40	40	10	60	60	15	160	160	40	Y
Min11	1	40	40	10	60	60	15	160	160	40	-
Min12	1	40	40	10	60	60	15	160	160	40	-
Min13		40	40	10	60	60	15	160	160	40	-
Halo	-	40	40	10	60	60	15	200	200	50	-

Table 14-96: Search Ellipse Dimensions

Table 14-97: Number of Composites Used in Interpolation

Pa	ss 1	Pa	ss 2	Pass 3		
Min.	Max.	Min.	Max.	Min.	Max.	
12	24	8	16	2	12	

14.5.9 Block Models

A single block model was created for the Boundary Zone estimate. Block model construction and estimation were completed using Leapfrog Edge 2023.2 software and the dimensions are presented in Table 14-98.

For Boundary Zone, the block models all have parent block sizes of 5 m x 5 m x 5 m and are not rotated. The models are each sub-blocked at wireframe contacts including mineralization, overburden, topography, and classification wireframes. The SLR QP considers the block model sizes to be appropriate for the deposit geometry and proposed mining methods.

SLR regularized each block model to a 5 m x 5 m x 5 m block size for pit optimization and mining sensitivity analysis. For final open pit resource reporting for Boundary Zone, the regularized version of the model was used. The SLR QP considers the regularized model more appropriate for open pit reporting due to the deposit type and style of mineralization. For final underground reporting the sub-blocked model was used.

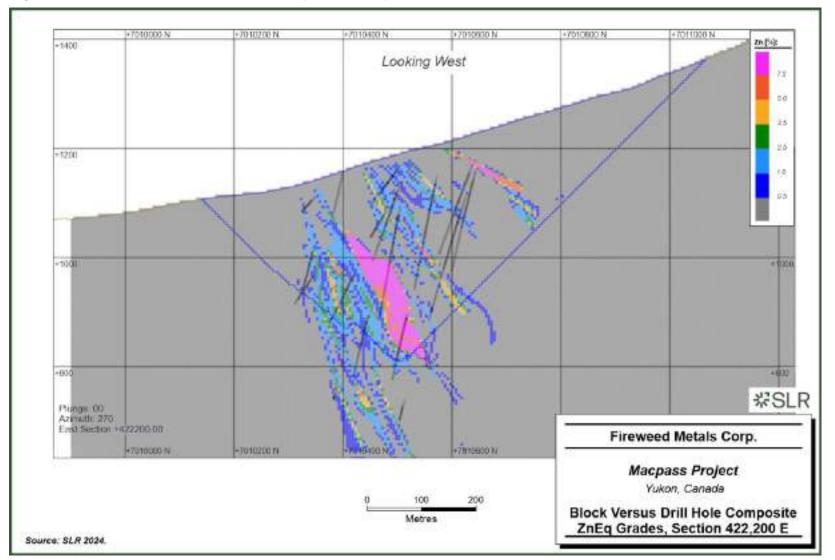
	X	Y	Z
Base Point	421,350.00	7,009,900.00	1,595.00
Boundary Size (m)	1,580	1,450	1,160
Parent Block Size (m)	5	5	5
Min. Sub-block Size (m)	1	1	1

Table 14-98: Boundary Zone Block Model

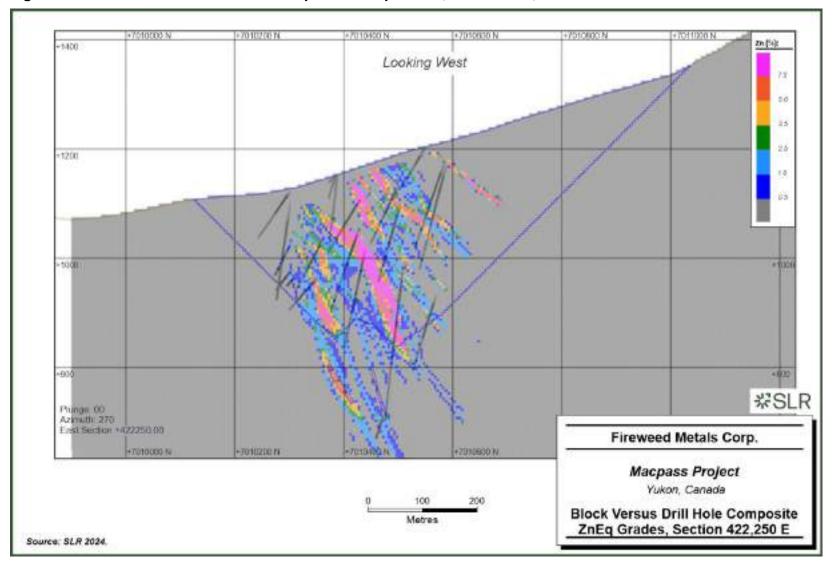
The block model was set up with a parent block size of five metres, allowing sub-blocking to one metre along the contacts of the lithological and mineralized domain wireframes. No rotation was applied. The block model parameters are provided in Table 14-99.

Parameter	Values	Description
litho	1	Overburden
	2	FullerLake
	3	DiamictiteSequence
	4	K4Mudstone
	5	UpperConglomerate-Upper Volcanics
	6	K3Mudstone
	7	MiddleConglomerate
	8	KMudstone
	9	MiddleVolcanics
	10	LowerConglomerate
	11	NidderyLakeUpper
	12	NidderyLakeLower
	13	LowerVolcanics

Table 14-99: Block Model Parameters


Parameter	Values	Description
	14	RoadRiverUndivided
	15	DolomiticMudstone
	101 – 113	Mineralized zones 1 to 13
	114	BZFL
	115	BZPZ
	116	BZUZ
min_zone	101 – 113	Mineralized zones 1 to 13
	114	BZFL
	115	BZPZ
	116	BZUZ
	1000	halo
min_type	1	BZFL, BZUZ, BZPZ
	2	Mineralized zones 1 to 13
	3	halo
Class	2	Indicated
	3	Inferred

14.5.10 Classification


Blocks were assigned confidence classifications using manually digitized shapes for each mineralized domain that were based on drill hole spacing criteria. The drill hole spacing criteria were based on inspection of geological, thickness and grade continuity, as well as geostatistical analysis. For the BZPZ and BZFL domains, Indicated and Inferred Mineral Resources have been defined where drill hole spacings of up to approximately 70 m and 140 m were achieved, respectively. For the BZUZ and the remaining vein style domains, Indicated and Inferred Mineral Resources have been defined where drill hole spacings of up to approximately 60 m and 120 m were achieved, respectively. The drill hole spacing of 120 m was applied to the entire Halo domain.

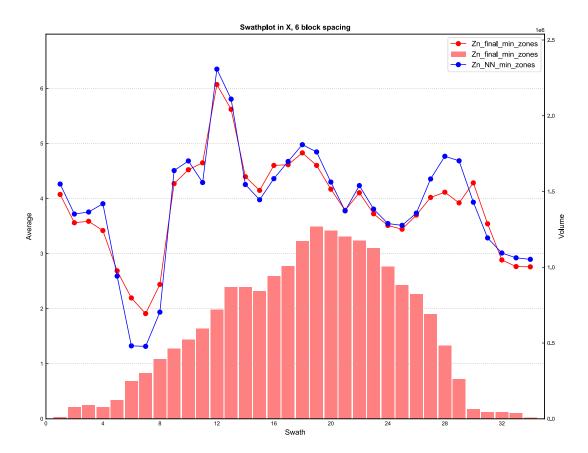
14.5.11 Block Model Validation

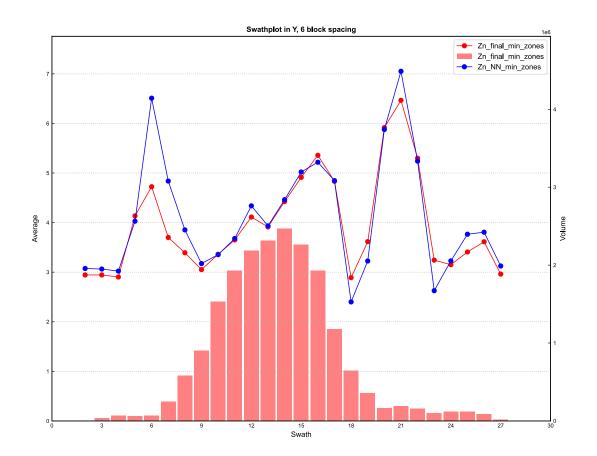
The validation of the block model included a volume check (Table 14-100), visual inspection of the interpolated grades in comparison to the composites (Figure 14-66 and Figure 14-67), comparison of global means of composite and declustered composites versus block grades by domain (Table 14-101), comparison of the global means of NN assignments against grades interpolated using ID² (Table 14-102), and swath plots for Zn, Pb, and Ag (Figure 14-68, Figure 14-69, and Figure 14-70, respectively.

Domain	Volume (m ³)		Difference (m ³)	Difference (%)
	Wireframe	Block model		
BZFL	366,910	366,865	-45.00	-0.01%
BZPZ	4,884,400	4,884,263	-137.00	0.00%
BZUZ	363,810	363,854	44.00	0.01%
Min01	1,363,300	1,363,001	-299.00	-0.02%
Min02	2,725,000	2,725,026	26.00	0.00%
Min03	1,352,100	1,352,172	72.00	0.01%
Min04	1,145,300	1,145,244	-56.00	0.00%
Min05	919,880	919,754	-126.00	-0.01%
Min06	1,694,700	1,694,582	-118.00	-0.01%
Min07	1,563,100	1,563,197	97.00	0.01%
Min08	713,340	713,407	67.00	0.01%
Min09	110,750	110,779	29.00	0.03%
Min10	1,279,400	1,279,399	-1.00	0.00%
Min11	901,930	901,908	-22.00	0.00%
Min12	179,540	179,494	-46.00	-0.03%
Min13	138,540	138,565	25.00	0.02%
Halo	20,264,000	20,264,271	271.00	0.00%

Table 14-100: Verification of Block Volumes Against Wireframe Volumes by Domain

Domain			Co	mposite	S					Blocks		
	Zn (%)	Pb (%)	Ag (g/t)	Ba (%)	Ga (g/t)	Ge (g/t)	Zn (%)	Pb (%)	Ag (g/t)	Ba (%)	Ga (g/t)	Ge (g/t)
BZFL	4.96	0.26	12.2	0.51	9.2	9.0	4.99	0.25	13.4	0.42	13.4	12.5
BZPZ	7.18	1.11	41.2	1.86	9.7	18.3	5.99	0.89	36.2	1.66	8.5	15.2
BZUZ	6.87	1.20	37.5	0.46	10.8	14.7	6.99	1.25	37.9	0.44	10.7	14.1
Min01	3.41	0.36	11.1	0.29	9.8	9.1	2.91	0.34	10.4	0.27	9.4	7.9
Min02	5.55	0.10	9.9	0.18	7.6	14.7	4.45	0.08	7.8	0.12	6.4	11.6
Min03	5.35	0.04	8.2	0.10	8.5	10.6	4.64	0.03	6.9	0.09	8.0	9.3
Min04	3.63	0.05	6.1	0.09	6.6	8.6	3.70	0.04	5.8	0.07	6.4	8.3
Min05	3.71	0.04	5.9	0.06	8.6	7.8	3.60	0.02	5.5	0.06	7.5	7.6
Min06	3.46	0.79	16.8	0.17	9.3	9.2	3.37	0.71	15.5	0.17	9.0	8.8
Min07	2.41	0.19	7.5	0.18	8.2	6.8	2.54	0.20	7.9	0.19	8.3	7.0
Min08	3.27	0.03	6.0	0.06	7.4	6.3	3.82	0.03	6.5	0.07	7.9	7.1
Min09	2.40	0.05	6.1	0.05	3.5	3.5	2.98	0.04	6.5	0.05	6.1	4.3
Min10	2.51	0.30	9.8	0.39	8.6	7.1	2.37	0.32	9.7	0.33	8.4	6.7
Min11	4.71	0.07	9.4	0.11	7.2	13.2	4.35	0.10	8.3	0.10	7.1	11.7
Min12	2.54	0.09	5.9	0.41	5.8	5.8	2.48	0.10	6.0	0.51	6.6	5.0
Min13	3.10	0.04	6.7	0.05	5.6	5.6	3.06	0.03	6.0	0.06	7.1	5.8
Halo	0.61	0.06	3.5	0.33	5.0	2.3	0.67	0.06	3.6	0.28	5.1	2.4


Table 14-101: Comparison of Global Means of Composite and Block Grades by Domain


Domain			Di	ifference				Difference (%)				
	Zn (%)	Pb (%)	Ag (g/t)	Ba (%)	Ga (g/t)	Ge (g/t)	Zn	Pb	Ag	Ва	Ga	Ge
BZFL	0.03	-0.01	1.1	-0.09	4.2	3.5	1%	-3%	9%	-17%	46%	40%
BZPZ	-1.19	-0.22	-5.0	-0.20	-1.2	-3.1	-17%	-20%	-12%	-11%	-12%	-17%
BZUZ	0.12	0.05	0.4	-0.02	-0.1	-0.6	2%	4%	1%	-5%	-1%	-4%
Min01	-0.50	-0.02	-0.8	-0.01	-0.4	-1.2	-15%	-6%	-7%	-5%	-4%	-13%
Min02	-1.10	-0.02	-2.1	-0.07	-1.2	-3.1	-20%	-23%	-21%	-36%	-16%	-21%
Min03	-0.71	-0.01	-1.3	-0.02	-0.6	-1.3	-13%	-24%	-16%	-17%	-7%	-13%
Min04	0.07	-0.01	-0.2	-0.01	-0.3	-0.3	2%	-14%	-4%	-16%	-4%	-4%
Min05	-0.11	-0.02	-0.4	0.00	-1.1	-0.2	-3%	-41%	-7%	-8%	-12%	-2%
Min06	-0.09	-0.08	-1.3	0.00	-0.3	-0.4	-3%	-10%	-8%	3%	-4%	-4%
Min07	0.13	0.01	0.4	0.01	0.1	0.3	5%	3%	6%	5%	1%	4%
Min08	0.55	0.00	0.5	0.00	0.5	0.8	17%	-7%	8%	8%	7%	13%
Min09	0.58	0.00	0.4	-0.01	2.6	0.8	24%	-4%	7%	-11%	74%	22%
Min10	-0.14	0.03	-0.1	-0.06	-0.2	-0.4	-5%	9%	-2%	-15%	-3%	-5%
Min11	-0.37	0.03	-1.1	-0.01	-0.2	-1.5	-8%	38%	-12%	-13%	-2%	-11%
Min12	-0.06	0.01	0.1	0.10	0.8	-0.8	-2%	9%	2%	25%	14%	-13%
Min13	-0.04	0.00	-0.7	0.01	1.4	0.1	-1%	-12%	-10%	13%	25%	2%
Halo	0.06	0.00	0.1	-0.04	0.1	0.1	10%	-1%	3%	-13%	2%	4%

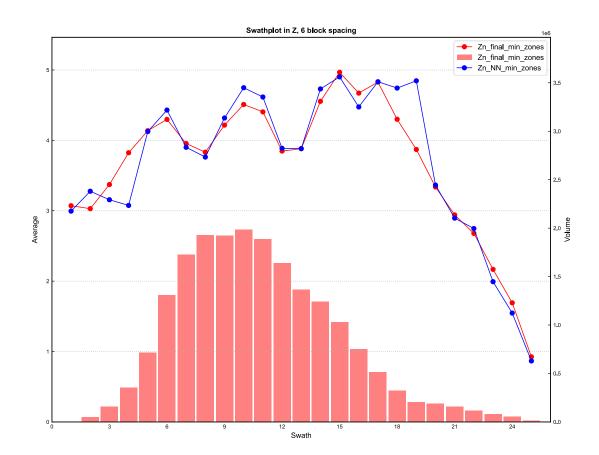
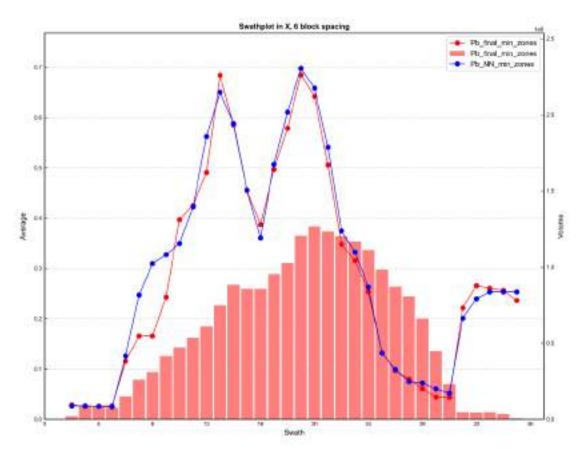
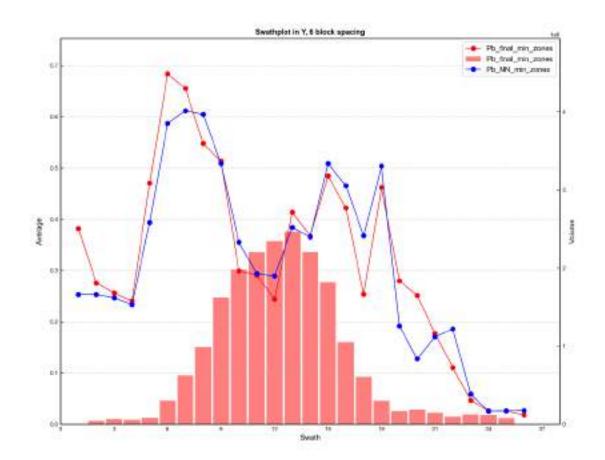
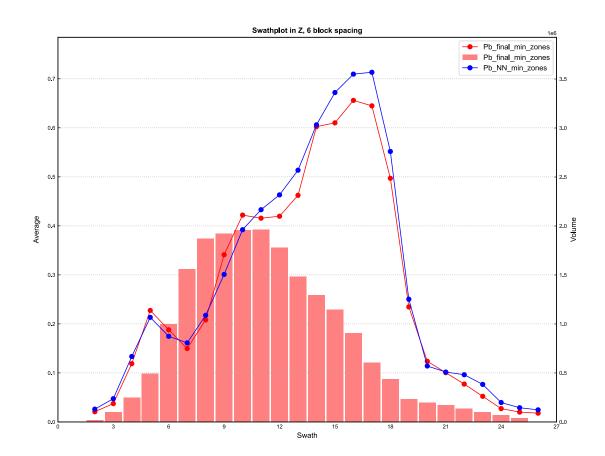
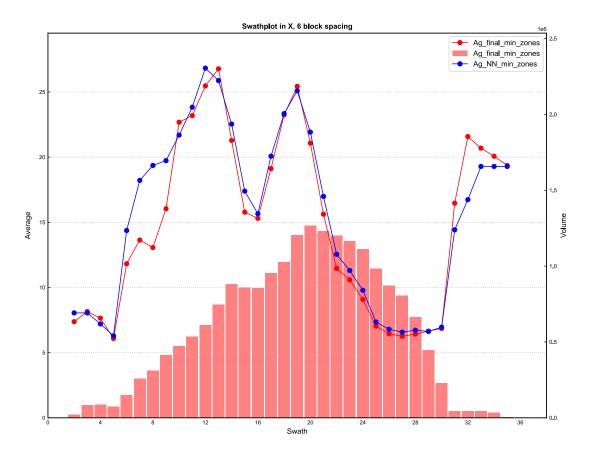

Domain	NN	ID ²	ID ² - NN
BZFL	4.8	5.0	0.2
BZPZ	6.0	6.0	0.0
BZUZ	6.8	7.0	0.2
Min01	3.0	2.9	-0.1
Min02	4.7	4.4	-0.2
Min03	4.8	4.6	-0.1
Min04	3.8	3.7	-0.1
Min05	3.6	3.6	0.0
Min06	3.3	3.4	0.1
Min07	2.6	2.5	-0.1
Min08	3.7	3.8	0.2
Min09	2.8	3.0	0.2
Min10	2.4	2.4	0.0
Min11	4.5	4.3	-0.2
Min12	2.6	2.5	-0.1
Min13	3.0	3.1	0.1
Halo	0.6	0.7	0.0

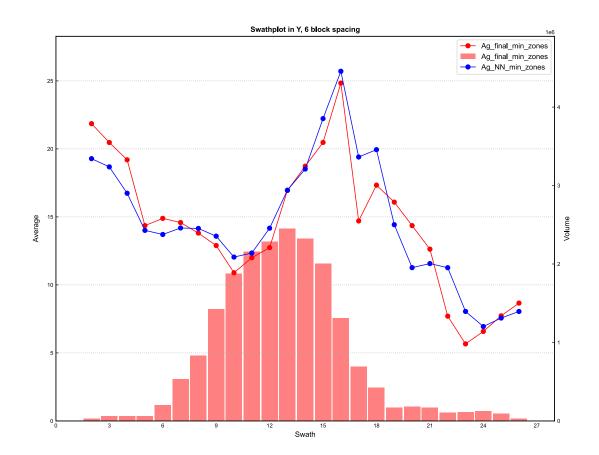
Table 14-102: Comparison Between Zinc (%) Grade Interpolated Using ID² and NN


Figure 14-68: Swath Plots for Zinc (%)






Figure 14-69: Swath Plots for Lead (%)



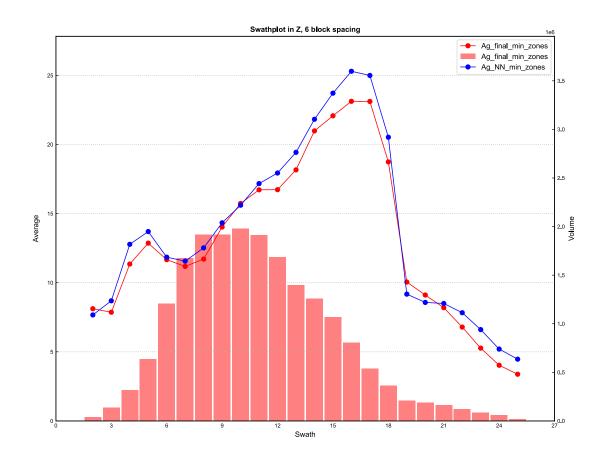


Figure 14-70: Swath Plots for Silver (g/t)

14.6 Cut-off Grade Inputs Supporting NSR and ZnEq Calculations

14.6.1 NSR Calculation

A unit NSR has been calculated considering a two concentrate (zinc concentrate and lead concentrate) scenario. The NSR values used for both open pit and underground Mineral Resources were calculated on a block-by-block basis using zinc, lead, and silver block grades with the input parameters listed in Table 14-103 to Table 14-107.

Metal prices used for Reserves are commonly based on consensus, long term forecasts from banks, financial institutions, and other sources. For Resources, metal prices used are slightly higher than those for used for Reserves. NSR block values and zinc equivalency are based on a price of US\$1.40/lb Zn, US\$1.10/lb Pb, US\$25/oz Ag, and a CAD:USD exchange rate of 1.32.

Metallurgical recoveries used in the NSR calculation are based on test work (where possible) and where data was not available, recoveries were estimated. Table 14-104 provides a list of deposit-specific metallurgical assumptions for NSR and ZnEq calculations.

Category	Unit	Tom, Jason, & End Zone	Boundary Zone Massive Sulphide	Boundary Zone Vein	Boundary Zone Halo
Recovery Zn, Zn Conc	%	89%	85%	88%	80%
Recovery Ag, Zn Conc	%	22%	30%	22%	22%
Recovery Pb, Pb Conc	%	75%	55%	55%	38%
Recovery Ag, Pb Conc	%	59%	40%	30%	20%
Zn Concentrate Grade Zn	%	58%	49%	56%	58%
Zn Concentrate Grade Hg	g/t	155	777	693	922
Hg Penalty	USD\$/dmt	\$0.00	\$14.11	\$11.63	\$21.63
Pb Concentrate Grade Pb	%	62%	45%	46%	44%
Zn Conc Payable Zn	%	85%	84%	85%	85%
Pb Conc Payable Pb	%	95%	93%	93%	93%

Table 14-103: Metallurgical Assumptions for NSR and ZnEq Calculations

For NSR and ZnEq calculations, fixed values are applied to all blocks within each domain for: metallurgical recoveries; grades of Zn, Pb, and Hg in Zn and Pb concentrates; mercury penalties; and payability of Zn and Pb. Silver grades and payability in zinc and lead concentrates were calculated on a block-by-block basis. For silver grades in lead concentrates less than 620.0 g/t, a minimum deduction was applied of 31 g/t silver with a maximum payability of 95% for silver in lead concentrates. For silver grades in zinc concentrates less than 311.0 g/t, a minimum deduction of 93 g/t silver was applied with a maximum payability of 70% for silver in zinc concentrates.

The SLR QP recommends the continued assaying of potential penalty elements alongside the primary payable elements to facilitate their future integration into the resource estimation workflow. The assaying of potential penalty elements will support ongoing metallurgical test work and improve the understanding of the various mineralization styles at the Macpass Project.

14.6.2 Cut-Off Grades

Cut-off grades were calculated for underground and open pit conceptual operating scenarios. NSR values were used as the basis for the cut-off grades, pit shell optimizations, and underground resource constraints.

Table 14-104 provides the unit mining, processing, general and administration (G&A), and sustaining capital expenditure (capex) costs that support the determination of the NSR cut-off grades for underground and open pit conceptual operating scenarios.

Category	Unit	Parameter
Cut-off grade	C\$/t NSR	C\$112.00 UG / \$30.00 OP
Processing	C\$/t milled	\$22.00
G&A	C\$/t milled	\$8.00
Mining (OP)	C\$/t moved	\$4.67
Mining (UG)	C\$/t milled	\$61.00
UG Sustaining (capex)	C\$/t milled	\$21.00
Foreign Exchange rate	CAD	1.32
Transport Costs	\$/wmt conc	\$293.55
Treatment Charges Zn/Pb	USD\$/dmt conc	\$225.00 / \$150.00
Concentrate moisture content	%	8.0
Silver Refining Costs	USD\$/oz	\$1.25
Zn Price	USD\$/lb	\$1.40
Pb Price	USD\$/lb	\$1.10
Ag Price	USD\$/oz	\$25.00
Royalty	NSR %	0.00

Table 14-104: List of Global Assumptions for NSR Calculations, Cut-off Grade
Determinations, and Reporting Parameters

Blocks were constrained by open pit shells and underground mining shapes at a base case mining scenario to demonstrate RPEEE at an NSR cut-off of C\$30/t open pit and C\$112/t underground. The cut-off grades were selected using cost estimates listed in Table 14-104 that assume: a mill throughput rate of 10,000 tpd; open pit mining rates of 10,000 tpd; and underground mining rates of 5,000 tpd per deposit.

Resources were reported for Inferred or Indicated blocks that are above the stated cut-off within the open pit shells, and for all Inferred or Indicated blocks within underground reporting panels that meet the average panel cut-off including all "must-take" internal dilution material within those panels.

14.6.3 Open Pit Optimization

SLR generated optimized pit shells for Tom, Jason, and End zones separately, using the Lerchs Grossman optimization method in Whittle, to be used as constraints for the preparation of Mineral Resource estimates. The optimized pit shells for Boundary were generated in Whittle using the Pseudoflow algorithm to better accommodate the large model size. The pit shells were

all run on a regularized models, with blocks measuring $5.0 \text{ m} \times 5.0 \text{ m} \times 5.0 \text{ m}$. Once regularized, the NSR was recalculated on a per block basis. The optimization used pit slope angles of 45° . Inputs for the Whittle optimization are summarized in Table 14-105.

Inputs	Units	Value
Slope Angles	0	45°
Mining Costs	C\$/t moved	4.67
Processing Cost	C\$/t milled	22.00
G&A	C\$/t milled	8.00
Discard COG Pit	NSR C\$/t	30.00

 Table 14-105: Open Pit Optimization Inputs

Different revenue factors between 0.6 and 1.0 were selected for each deposit during the open pit optimization process. The revenue factor is a scaling parameter applied to the metal prices (or commodity prices) used in the economic evaluation of pit shells. It is expressed as a percentage or factor of the base case (or expected) metal price. For example, a revenue factor of 1.0 corresponds to using the full base case metal prices in the optimization process, while a revenue factor of 0.8 means that the prices used are 80% of the base case prices. This approach was used to optimize the strip ratio, maximize net resource, minimize waste production, limit environmental impacts, and provide a resource suitable for optimizing economics in any future studies (revenue factors and strip ratios are listed in Table 14-106).

Table 14-106: Revenue Factors and Strip Ratios

Category	Tom	Jason	End Zone	Boundary Zone
Base Case OP Revenue Factor	0.8	0.6	0.8	1.0
Base Case OP Strip Ratio	9.4	6.2	10.0	4.9

The SLR QP recommends that slope angles be continuously reviewed as new data is collected, to ensure that the parameters reflect any new changes in geological and geotechnical conditions. This review should take into account RQD data from new drilling, insights from geological modelling that identify new faults, and findings from completed geotechnical drilling or studies.

14.6.4 Underground Optimization

SLR generated mineable shapes on the sub-blocked model using Deswik Stope Optimizer (DSO) to limit Mineral Resources to contiguous mineralization zones. The mineable shapes are optimized to capture the least amount of waste dilution while respecting the shapes' input parameters. The input parameters used in DSO are presented in Table 14-107.

Attribute	Tom	Jason	End Zone	Boundary Zone
Panel Height (H)	20 m	20 m	20 m	20 m
Panel Length (L)	10 m	10 m	10 m	20 m
Sub-shape Height (H)	10 m	10 m	10 m	10 m
Sub-shape Length (L)	5 m	5 m	5 m	10 m
Minimum Width	2 m	2 m	2 m	5 m
Minimum Wall Angle	50	50	50	50
Maximum Wall Angle	130	130	130	130
NSR Cut-off	C\$112/t	C\$112/t	C\$112/t	C\$112/t

Table 14-107: Underground Optimization Inputs

14.6.5 Sensitivity Analysis (Open Pit and Underground Optimization)

Cut-off grade (CoG) sensitivity analyses were run on each deposit at increments of 20% NSR cut-off, starting at a -20% scenario and ending with a +80% scenario to determine continuity of mineralization and resiliency of the resource to changes in cost environment or metal pricing as shown in Table 14-108. A robust method was used to perform the sensitivity analysis: new open pit shells and underground mining shapes were generated based on each of the revised cut-off values for each sensitivity scenario at each deposit to most accurately reflect Mineral Resources that would be reported at cut-off values that deviate from the base case scenario. Results show strong continuity of mineralization within both open pit and underground environments across the range of scenarios tested, with contiguous underground reporting panels generating very few isolated outlying reporting panels. Visual representations of these scenarios are presented in Figure 14-71 to Figure 14-73.

For spatial reference in Figure 14-71, the highest point where the base case conceptual open pit intersects the topography at the Tom deposit is at 1,861 metres above sea level (MASL), while the base of the lowest block in the Tom Southeast underground area is at 820 MASL. For spatial reference in Figure 14-72, the highest point where the base case conceptual open pit intersects the topography at the Jason deposit is at 1,365 MASL, while the base of the lowest block in the Jason South underground area is at 417.5 MASL. For spatial reference in Figure 14-73, the highest point where the base case conceptual open pit intersects the topography at the Boundary Zone deposit is at 1,365 MASL, while the base of the lowest block in the Boundary Zone underground area is at 695 MASL.

Table 14-108 illustrates the resiliency of the Mineral Resource to decreases in metal pricing. Keeping cost assumptions fixed at the base case, non-unique example combinations of breakeven prices would be approximately: at +20% NSR cut-off USD\$1.24/lb Zn, USD\$0.97/lb Pb, and USD\$22.10/oz Ag; at +40% NSR cut-off USD\$1.12/lb Zn, USD\$0.88/lb Pb, and USD\$20.05/oz Ag; at +60% NSR cut-off USD\$1.03/lb Zn, USD\$0.81/lb Pb, and USD\$18.48/oz Ag; and at +80% NSR cut-off USD\$0.97/lb Zn, USD\$0.76/lb Pb, and USD\$17.28/oz Ag.

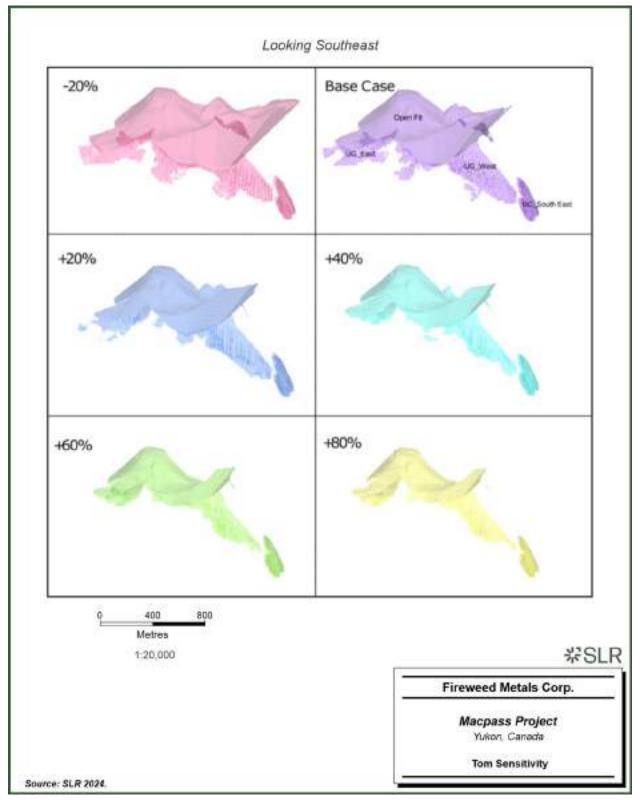
Class	OP/UG	CoG NSR (C\$/t)	CoG ZnEq (%)	Tonnes (Mt)	NSR (C\$/t)	ZnEq. (%)	Zn (%)	Pb (%)	Ag (g/t)
Ind	OP	24.0	1.10	57.19	131.7	6.39	5.00	1.37	21.9
Ind	OP	30.0	1.40	49.08	130.4	6.51	5.10	1.14	21.2
Ind	OP	36.0	1.70	41.78	137.7	6.68	5.38	1.33	23.7
Ind	OP	42.0	2.00	35.27	142.5	6.91	5.57	1.38	24.6
Ind	OP	48.0	2.30	28.90	149.3	7.24	5.85	1.44	26.7
Ind	OP	54.0	2.50	24.31	157.3	7.63	6.21	1.50	29.7
Inf	OP	24.0	1.10	31.19	97.4	4.72	3.87	0.78	11.7
Inf	OP	30.0	1.40	22.40	103.6	5.06	4.05	0.90	14.8
Inf	OP	36.0	1.70	16.98	112.5	5.46	4.28	1.06	18.0
Inf	OP	42.0	2.00	12.90	125.6	6.09	4.64	1.29	21.7
Inf	OP	48.0	2.30	8.40	139.9	6.94	5.01	1.55	25.8
Inf	OP	54.0	2.50	7.00	159.9	7.75	5.47	1.96	32.3
Ind	UG	89.6	4.20	6.42	225.2	10.92	7.59	2.97	34.5
Ind	UG	112.0	5.30	6.92	259.9	12.64	8.29	4.00	42.8
Ind	UG	134.4	6.30	7.45	285.9	12.94	8.34	4.30	43.1
Ind	UG	156.8	7.40	7.62	308.4	13.87	9.84	4.38	50.4
Ind	UG	179.2	8.40	7.04	308.4	14.95	9.39	4.89	57.9
Ind	UG	201.6	9.50	6.71	329.0	15.96	9.78	5.39	66.2
	Ind Ind Ind Ind Ind Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf	Ind OP Inf UG Ind UG Ind UG Ind UG	Ind OP 24.0 Ind OP 30.0 Ind OP 36.0 Ind OP 42.0 Ind OP 42.0 Ind OP 48.0 Ind OP 54.0 Ind OP 24.0 Ind OP 48.0 Ind OP 30.0 Inf OP 36.0 Inf OP 42.0 Inf OP 42.0 Inf OP 42.0 Inf OP 48.0 Inf OP 54.0 Inf UG 112.0 Ind UG 134.4 Ind UG 156.8 Ind UG 179.2	(C\$/t) (%) Ind OP 24.0 1.10 Ind OP 30.0 1.40 Ind OP 36.0 1.70 Ind OP 42.0 2.00 Ind OP 42.0 2.00 Ind OP 48.0 2.30 Ind OP 54.0 2.50 Inf OP 24.0 1.10 Inf OP 24.0 1.10 Inf OP 24.0 1.40 Inf OP 36.0 1.70 Inf OP 36.0 1.40 Inf OP 36.0 1.40 Inf OP 42.0 2.00 Inf OP 48.0 2.30 Inf OP 48.0 2.30 Inf OP 54.0 2.50 Ind UG 112.0 5.30 Ind UG 134.4 6.30	(C\$/t) (%) (Mt) Ind OP 24.0 1.10 57.19 Ind OP 30.0 1.40 49.08 Ind OP 36.0 1.70 41.78 Ind OP 42.0 2.00 35.27 Ind OP 48.0 2.30 28.90 Ind OP 54.0 2.50 24.31 Ind OP 54.0 2.50 24.31 Inf OP 24.0 1.10 31.19 Inf OP 36.0 1.70 16.98 Inf OP 36.0 1.70 16.98 Inf OP 48.0 2.30 8.40 Inf OP 48.0 2.30 8.40 Inf OP 48.0 2.30 8.40 Inf OP 54.0 2.50 7.00 Inf OP 54.0 5.30 6.92 Ind UG	(C\$/t) (%) (Mt) (C\$/t) Ind OP 24.0 1.10 57.19 131.7 Ind OP 30.0 1.40 49.08 130.4 Ind OP 36.0 1.70 41.78 137.7 Ind OP 42.0 2.00 35.27 142.5 Ind OP 48.0 2.30 28.90 149.3 Ind OP 54.0 2.50 24.31 157.3 Ind OP 54.0 2.50 24.31 157.3 Inf OP 24.0 1.10 31.19 97.4 Inf OP 30.0 1.40 22.40 103.6 Inf OP 36.0 1.70 16.98 112.5 Inf OP 42.0 2.00 12.90 125.6 Inf OP 48.0 2.30 8.40 139.9 Inf OP 54.0 2.50 7.00 159.9 <td>(C\$/t) (%) (Mt) (C\$/t) (%) Ind OP 24.0 1.10 57.19 131.7 6.39 Ind OP 30.0 1.40 49.08 130.4 6.51 Ind OP 36.0 1.70 41.78 137.7 6.68 Ind OP 42.0 2.00 35.27 142.5 6.91 Ind OP 48.0 2.30 28.90 149.3 7.24 Ind OP 54.0 2.50 24.31 157.3 7.63 Ind OP 24.0 1.10 31.19 97.4 4.72 Inf OP 24.0 1.10 31.19 97.4 4.72 Inf OP 30.0 1.40 22.40 103.6 5.06 Inf OP 36.0 1.70 16.98 112.5 5.46 Inf OP 48.0 2.30 8.40 139.9 6.94 Inf</td> <td>(C\$/t) (%) (Mt) (C\$/t) (%) (%) Ind OP 24.0 1.10 57.19 131.7 6.39 5.00 Ind OP 30.0 1.40 49.08 130.4 6.51 5.10 Ind OP 36.0 1.70 41.78 137.7 6.68 5.38 Ind OP 42.0 2.00 35.27 142.5 6.91 5.57 Ind OP 48.0 2.30 28.90 149.3 7.24 5.85 Ind OP 54.0 2.50 24.31 157.3 7.63 6.21 Inf OP 24.0 1.10 31.19 97.4 4.72 3.87 Inf OP 24.0 1.10 31.19 97.4 4.72 3.87 Inf OP 30.0 1.40 22.40 103.6 5.06 4.05 Inf OP 36.0 1.70 16.98 112.5</td> <td>Ind OP 24.0 1.10 57.19 131.7 6.39 5.00 1.37 Ind OP 30.0 1.40 49.08 130.4 6.51 5.10 1.14 Ind OP 30.0 1.40 49.08 130.4 6.51 5.10 1.14 Ind OP 36.0 1.70 41.78 137.7 6.68 5.38 1.33 Ind OP 42.0 2.00 35.27 142.5 6.91 5.57 1.38 Ind OP 48.0 2.30 28.90 149.3 7.24 5.85 1.44 Ind OP 54.0 2.50 24.31 157.3 7.63 6.21 1.50 Inf OP 24.0 1.10 31.19 97.4 4.72 3.87 0.78 Inf OP 30.0 1.40 22.40 103.6 5.06 4.05 0.90 Inf OP 36.0 1.70</td>	(C\$/t) (%) (Mt) (C\$/t) (%) Ind OP 24.0 1.10 57.19 131.7 6.39 Ind OP 30.0 1.40 49.08 130.4 6.51 Ind OP 36.0 1.70 41.78 137.7 6.68 Ind OP 42.0 2.00 35.27 142.5 6.91 Ind OP 48.0 2.30 28.90 149.3 7.24 Ind OP 54.0 2.50 24.31 157.3 7.63 Ind OP 24.0 1.10 31.19 97.4 4.72 Inf OP 24.0 1.10 31.19 97.4 4.72 Inf OP 30.0 1.40 22.40 103.6 5.06 Inf OP 36.0 1.70 16.98 112.5 5.46 Inf OP 48.0 2.30 8.40 139.9 6.94 Inf	(C\$/t) (%) (Mt) (C\$/t) (%) (%) Ind OP 24.0 1.10 57.19 131.7 6.39 5.00 Ind OP 30.0 1.40 49.08 130.4 6.51 5.10 Ind OP 36.0 1.70 41.78 137.7 6.68 5.38 Ind OP 42.0 2.00 35.27 142.5 6.91 5.57 Ind OP 48.0 2.30 28.90 149.3 7.24 5.85 Ind OP 54.0 2.50 24.31 157.3 7.63 6.21 Inf OP 24.0 1.10 31.19 97.4 4.72 3.87 Inf OP 24.0 1.10 31.19 97.4 4.72 3.87 Inf OP 30.0 1.40 22.40 103.6 5.06 4.05 Inf OP 36.0 1.70 16.98 112.5	Ind OP 24.0 1.10 57.19 131.7 6.39 5.00 1.37 Ind OP 30.0 1.40 49.08 130.4 6.51 5.10 1.14 Ind OP 30.0 1.40 49.08 130.4 6.51 5.10 1.14 Ind OP 36.0 1.70 41.78 137.7 6.68 5.38 1.33 Ind OP 42.0 2.00 35.27 142.5 6.91 5.57 1.38 Ind OP 48.0 2.30 28.90 149.3 7.24 5.85 1.44 Ind OP 54.0 2.50 24.31 157.3 7.63 6.21 1.50 Inf OP 24.0 1.10 31.19 97.4 4.72 3.87 0.78 Inf OP 30.0 1.40 22.40 103.6 5.06 4.05 0.90 Inf OP 36.0 1.70

Table 14-108: Mineral Resource Sensitivity to Metal Pricing

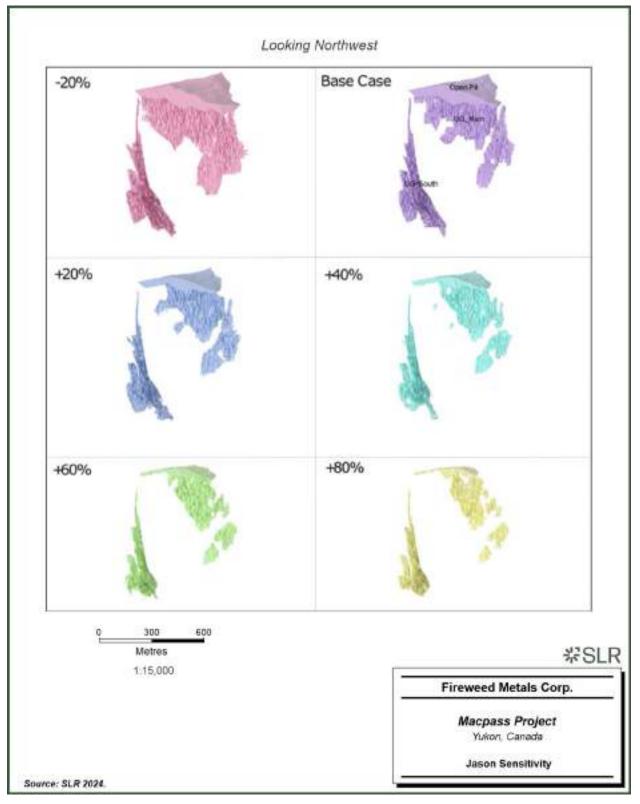
Scenario NSR CoG	Class	OP/UG	CoG NSR (C\$/t)	CoG ZnEq (%)	Tonnes (Mt)	NSR (C\$/t)	ZnEq. (%)	Zn (%)	Pb (%)	Ag (g/t)
-20%	Inf	UG	89.6	4.20	32.64	178.3	8.65	5.44	2.65	28.8
Base Case	Inf	UG	112.0	5.30	26.09	200.3	9.56	6.09	3.10	33.4
20%	Inf	UG	134.4	6.30	15.94	228.9	11.10	6.44	3.79	43.6
40%	Inf	UG	156.8	7.40	13.99	263.5	12.78	6.84	4.07	57.6
60%	Inf	UG	179.2	8.40	11.19	288.1	13.97	7.11	4.50	67.6
80%	Inf	UG	201.6	9.50	9.43	308.4	14.96	7.33	5.08	76.3

Notes:

1. Tonnes have been reported in millions, rounded to the nearest 10,000.


2. NSR values were calculated on a block-by-block basis and reported as mass-weighted averages for each scenario.

3. Zinc equivalency in this table for non-base case scenarios was approximated using a simplified formula: NSR(\$/t)/20.62 = ZnEq(%).


4. All scenarios presented in this table are deemed to meet the requirements for RPEEE.

5. Base case scenarios are presented as in Table 14-2 and Table 14-3.

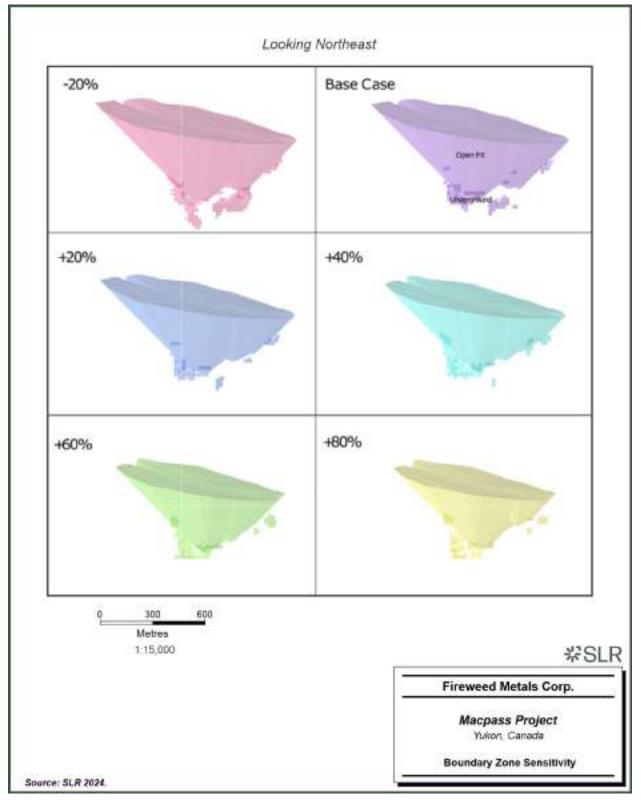

Figure 14-71: Tom Sensitivity

Figure 14-72: Jason Sensitivity

14.7 Mineral Resource Reporting

14.7.1 Tom

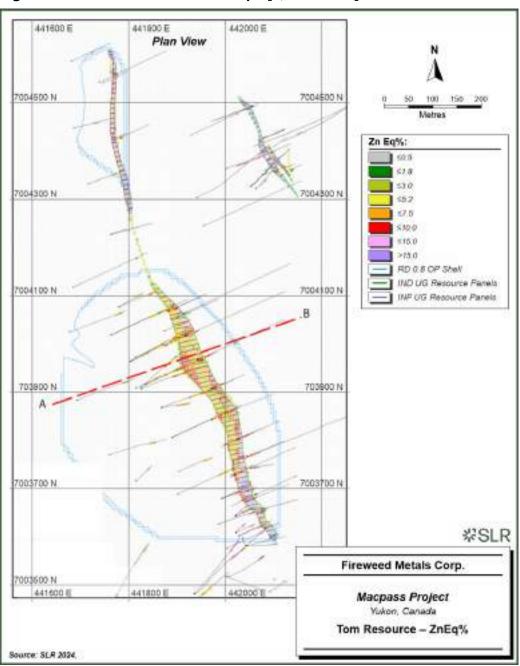
Mineral Resources for Tom are reported as the Mineral Resource estimation methodologies and classification criteria detailed in this Technical Report. Table 14-109 summarizes the Tom Mineral Resource estimates by domain for Zn, Pb, and Ag, effective September 4, 2024. Table 14-110 and Table 14-111 provide the Tom Mineral Resource estimates for Zn, Pb, and Ag within the open pit and underground scenarios, respectively.

Combined Indicated Mineral Resources total 17.52 Mt, at an average grade of 6.30% Zn, 3.34% Pb, and 32.9 g/t Ag, for a total of 2,435 Mlb Zn, 1,291 Mlb Pb, and 18.56 Moz Ag, respectively. Combined Inferred Mineral Resources total 18.94 Mt, at an average grade of 6.56% Zn, 2.30% Pb, and 25.2 g/t Ag, for a total of 2,738 Mlb Zn, 960 Mlb Pb, and 15.37 Moz Ag, respectively.

Figure 14-74 and Figure 14-75 display a block model cross section and plan view of the Tom deposit, highlighting the open pit and underground mining constraints, classification boundaries, and zinc equivalent grades.

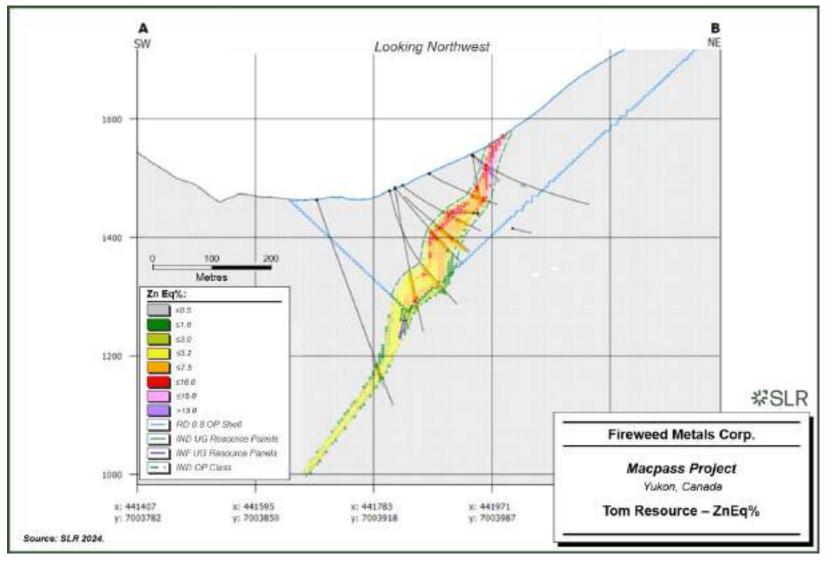
The SLR QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimates.

Class	Area	Mass	Grade				Metal			
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (Mlb)	Ag (Moz)	
Indicated	Tom West	15.92	9.23	6.17	2.91	26.6	2,164	1,022	13.61	
	Tom Southeast	-	-	-	-	-	-	-	-	
	Tom East	1.61	16.59	7.63	7.61	95.8	270	269	4.95	
Total India	cated	17.52	9.90	6.30	3.34	32.9	2,435	1,291	18.56	
Inferred	Tom West	13.58	7.30	5.97	1.37	9.7	1,786	410	4.25	
	Tom Southeast	4.32	11.16	7.50	3.09	42.2	715	295	5.87	
	Tom East	1.03	24.16	10.36	11.17	157.9	236	255	5.25	
Total Inferred 18.94		18.94	9.10	6.56	2.30	25.2	2,738	960	15.37	
See Table 14	-1 footnotes.	•	•		•					

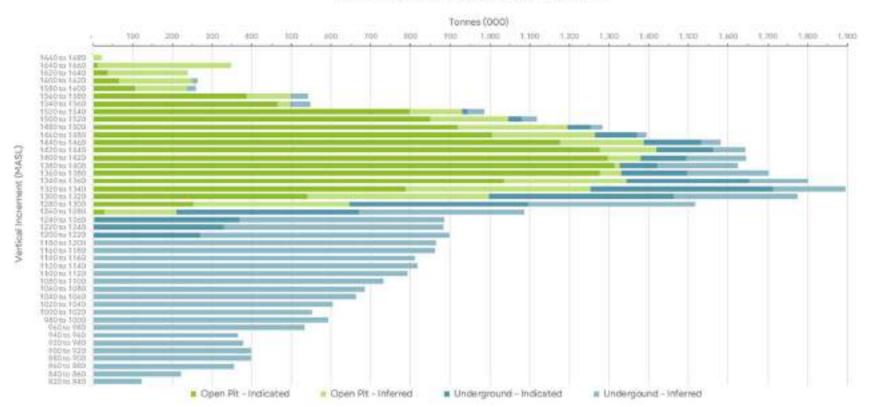

Table 14-109: Tom Open Pit and Underground Mineral Resource Estimate, September 4,2024

Class	Area	Mass	Grade				Metal			
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (Mlb)	Ag (Moz)	
Indicated	Tom West	12.50	8.06	5.66	2.33	19.8	1,560	643	8.00	
	Tom Southeast	-	-	-	-	-	-	-	-	
	Tom East	1.13	14.57	7.80	5.90	71.4	194	146	2.59	
Total Indi	cated	13.63	8.60	5.84	2.63	24.1	1,754	789	10.56	
Inferred	Tom West	3.20	5.64	5.05	0.71	1.9	357	50	0.20	
	Tom Southeast	-	-	-	-	-	-	-	-	
	Tom East	1.00	24.55	10.57	11.30	160.3	234	250	5.17	
Total Inferred 4.		4.20	10.16	6.37	3.24	39.7	591	300	5.37	
See Table 14	I-1 footnotes.									

Table 14-110: Tom	Open Pit Minera	Resource Estimate	, September 4, 2024
	000000		, ooptonisor 1, 2021

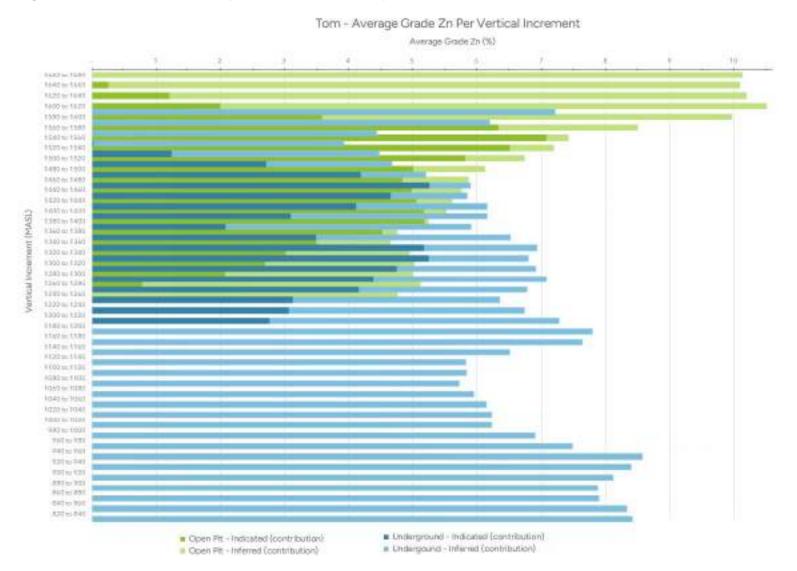

Table 14-111: Tom Underground Mineral Resource	e Estimate, September 4, 2024
--	-------------------------------

Class	Area	Mass		Grade				Metal			
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (Mlb)	Ag (Moz)		
Indicated	Tom West	3.42	13.50	8.02	5.04	51.3	604	379	5.64		
	Tom Southeast	-	-	-	-	-	-	-	-		
	Tom East	0.48	21.32	7.25	11.60	152.8	77	123	2.36		
Total Indic	cated	3.90	14.46	7.93	5.85	63.8	681	502	8.00		
Inferred	Tom West	10.38	7.81	6.25	1.57	12.1	1,430	360	4.05		
	Tom Southeast	4.32	11.16	7.50	3.09	42.2	715	295	5.875		
	Tom East	0.03	11.84	3.72	7.04	80.3	3	5	0.80		
Total Inferred 14		14.74	8.80	6.61	2.03	21.1	2,148	660	10.00		
See Table 14	-1 footnotes.	•	•		•						



14.7.1.1 Tonnage and Grade Distribution by Elevation

The following figures (Figure 14-76 to Figure 14-80) present the open pit and underground mineral resources by tonnes and grade per vertical increment for the Tom deposit.


Figure 14-76: Tom Tonnage per Vertical Increment

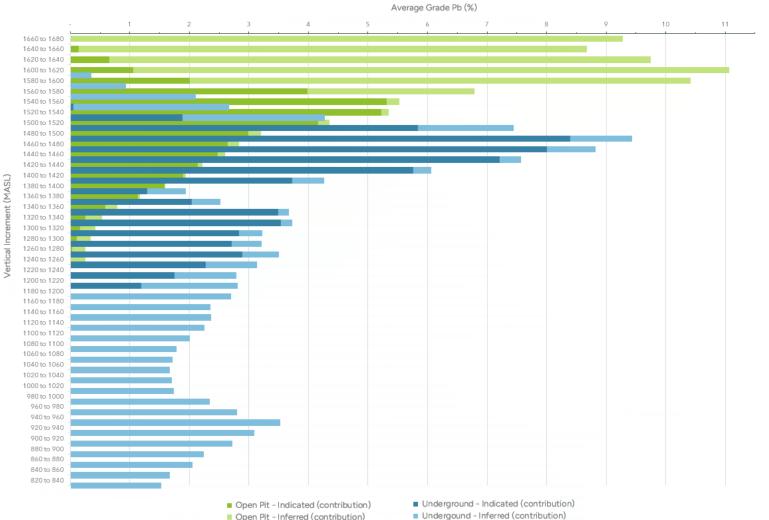
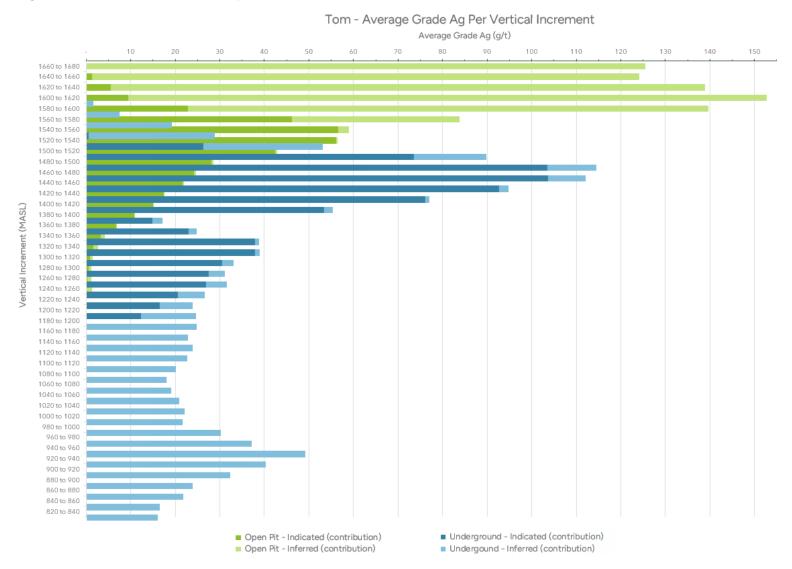
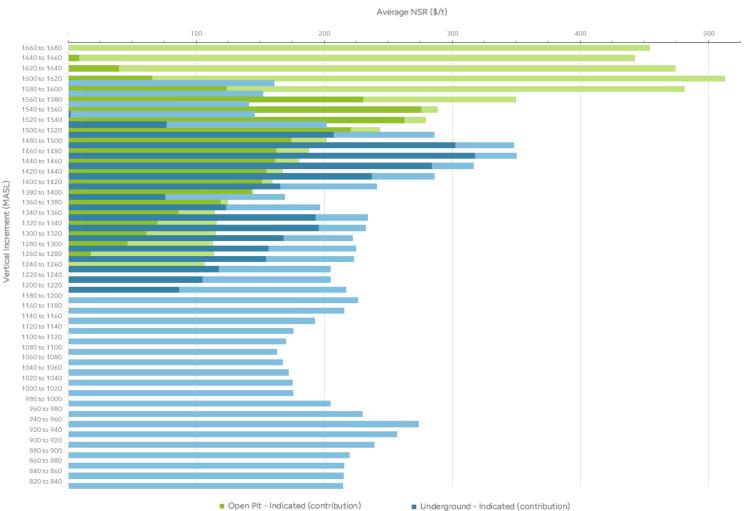

Tom - Total Tonnes Per Vertical Increment

Figure 14-77: Tom Zinc Grade per Vertical Increment)


Figure 14-78: Tom Lead Grade per Vertical Increment


Open Pit - Inferred (contribution)

Tom - Average Grade Pb Per Vertical Increment

Figure 14-79: Tom Silver Grade per Vertical Increment

Figure 14-80: Tom C\$NSR/t per Vertical Increment

Open Pit - Inferred (contribution)

Tom - NSR \$/Tonne Per Vertical Increment

꾻

Undergound - Inferred (contribution)

14.7.1.2 Comparison with Previous Mineral Resource Estimates

A comparison of Mineral Resources from 2018 to 2024 is presented in Table 14-112. Comparing Mineral Resources at September 4, 2024 versus January 10, 2018, the SLR QP notes the following principal changes:

- Improvements to the geological interpretation that have allowed for the generation of well defined and robust estimation domains. The updated interpretation has allowed for improved sub-domaining and the inclusion of the additional zones including the unit on the footwall and the sulphide and laminated zones.
- Eleven new drill holes added since the previous 2018 MRE supporting interpretation and classification changes for Tom West.
- In 2018, metal price assumptions were: US\$1.17/lb Zn, US\$0.99/lb Pb, and US\$16.95/oz Ag and an exchange rate of US\$1 = C\$1.24.
 - Based on these metal prices and associated metallurgical inputs at the time, the Mineral Resources were reported at a \$65 C\$NSR/t block cut-off using no constraining volumes.
- Metal recovery assumptions in 2018 were: 79% Zn, 82% Pb, and 85% Ag (12% to Zn concentrate and 73% to Pb concentrate).
- In 2024, metal price assumptions are: US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Ag, and an exchange rate of US\$1 = C\$1.32.
 - Based on these metal prices and associated metallurgical inputs described in Section 14.6.1, the updated Mineral Resources are reported in conceptual open pit shells at a \$30 C\$NSR/t cut-off and a \$112 C\$NSR/t cut-off within underground mining volumes.
- Metal recovery assumptions in 2024 were: 89% Zn, 75% Pb, and 82% Ag (net to Zn and Pb concentrates)

Area	Year	Class	Mass		G	rade		Metal			
			(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (MIb)	Ag (Moz)	
Tom	2018	Indicated	8.71	9.49	6.12	2.69	26.8	1,175	516	7.51	
		Inferred	23.22	8.22	5.56	2.03	24.2	3,208	1,515	27.22	
	2024	Indicated	17.52	9.90	6.30	3.34	32.9	2,435	1,291	18.56	
		Inferred	18.94	9.10	6.56	2.30	25.2	2,738	960	15.37	
	Change	Indicated	50%	4%	3%	20%	19%	52%	60%	60%	
		Inferred	-23%	10%	15%	12%	4%	-17%	-58%	-77%	

Table 14-112: Tom 2024 Mineral Resources Versus 2018 Mineral Resources for Tom

14.7.2 Jason and End Zone

Mineral Resources for Jason and End Zone are reported as the Mineral Resource estimation methodologies and classification criteria detailed in this Technical Report. Table 14-113 summarizes the Jason and End Zone Mineral Resource estimates by domain for Zn, Pb, and Ag, effective September 4, 2024. Table 14-114 and Table 14-115 provide the Jason and End Zone Mineral Resource estimates for Zn, Pb, and Ag within the open pit and underground scenarios, respectively.

Combined Indicated Mineral Resources total 4.14 Mt, at an average grade of 7.31% Zn, 2.72% Pb, and 8.7 g/t Ag, for a total of 667 Mlb Zn, 248 Mlb Pb, and 1.16 Moz Ag, respectively. Combined Inferred Mineral Resources total 12.09 Mt, at an average grade of 5.35% Zn, 4.43% Pb, and 48.2 g/t Ag, for a total of 1,425 Mlb Zn, 1,179 Mlb Pb, and 18.73 Moz Ag, respectively.

Figure 14-81 and Figure 14-82 show a block model cross-section and plan view of the Jason deposit, highlighting the open pit and underground mining constraints, classification boundaries, and zinc equivalent grades. Similarly, Figure 14-83 and Figure 14-84 present the same information for the End Zone deposit.

The SLR QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimates.

Class	Area	Mass		Gi	ade		Metal			
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (MIb)	Pb (Mlb)	Ag (Moz)	
Indicated	Jason Main	3.80	9.09	7.62	1.86	1.7	638	156	0.21	
	Jason South	-	-	-	-	-	-	-	-	
	End Zone	0.34	16.15	3.81	12.32	86.2	29	93	0.95	
Total Indic	ated	4.14	9.67	7.31	2.72	8.7	667	248	1.16	
Inferred	Jason Main	4.06	7.19	6.36	1.06	1.0	569	95	0.13	
	Jason South	7.59	12.11	5.00	6.08	73.4	838	1,018	17.92	
	End Zone	0.44	8.76	1.86	6.88	48.1	18	67	0.68	
Total Infer	Total Inferred		10.34	5.35	4.43	48.2	1,425	1,179	18.73	
See Table 14-	1 footnotes.									

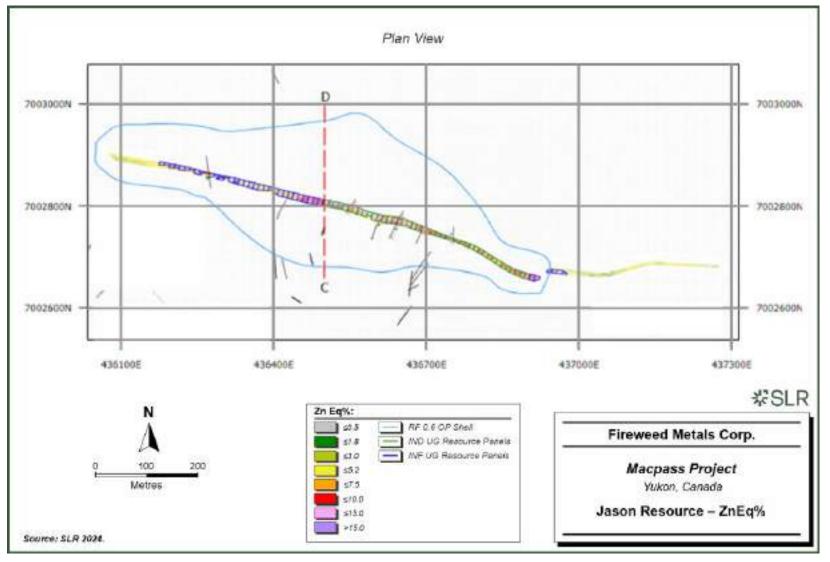
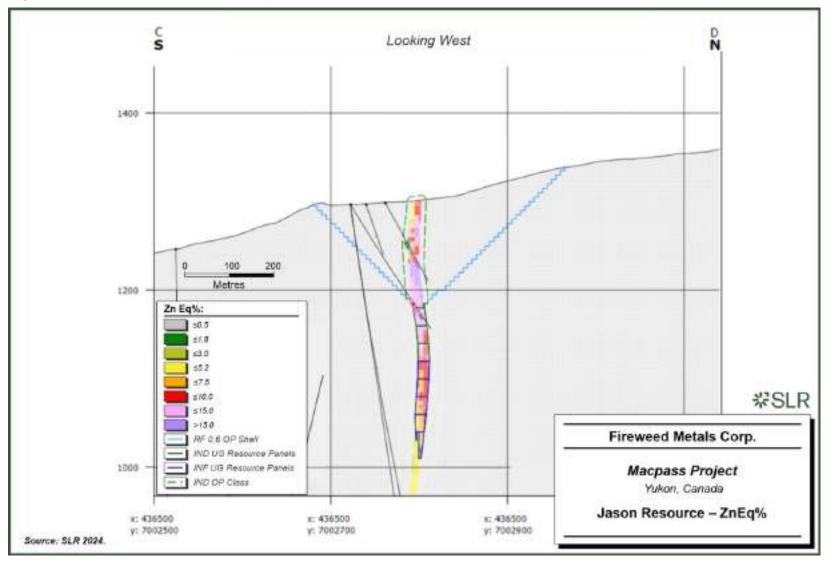
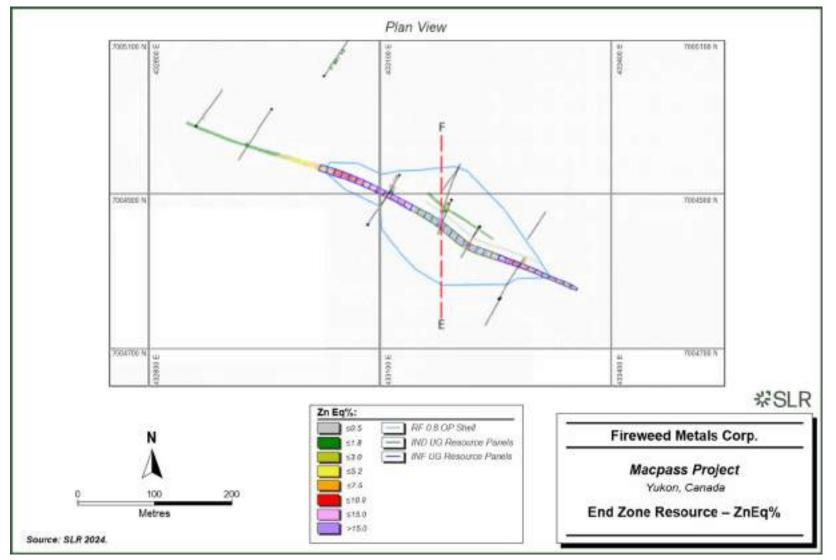
Table 14-113: Jason Open Pit and Underground Mineral Resource Estimate, September 4,	
2024	

Table 14-114: Jason Open Pit Mineral Resource Estimate, September 4, 2024

Class	Area	Mass		Gı	ade		Metal		
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (MIb)	Pb (Mlb)	Ag (Moz)
Indicated	Jason Main	1.63	8.63	6.96	2.12	2.1	251	76	0.11
	Jason South	-	-	-	-	-	-	-	-
	End Zone	0.32	16.43	3.91	12.51	87.3	28	89	0.90
Total India	cated	1.95	9.91	6.46	3.83	16.1	278	165	1.01
Inferred	Jason Main	1.06	6.59	5.68	1.16	0.9	132	27	0.31
	Jason South	-	-	-	-	-	-	-	-
	End Zone	0.24	9.57	2.27	7.32	50.1	12	38	0.38
Total Infer	Total Inferred		7.13	5.06	2.29	9.9	144	65	0.41
See Table 14	-1 footnotes.						•		

Class	Area	Mass		G	rade			Metal	
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (Mlb)	Ag (Moz)
Indicated	Jason Main	2.17	9.43	8.12	1.67	1.5	388	80	0.10
	Jason South	-	-	-	-	-	-	-	-
	End Zone	0.02	11.43	2.16	9.07	68.0	1	4	0.42
Total Indic	ated	2.19	9.45	8.07	1.73	2.1	389	83	0.14
Inferred	Jason Main	3.00	7.41	6.60	1.02	1.0	437	67	0.94
	Jason South	7.59	12.11	5.00	6.08	73.4	838	1,018	17.92
	End Zone	0.20	7.83	1.40	6.38	45.9	6	29	0.30
Total Infer	Total Inferred		10.72	5.38	4.68	52.8	1,280	1,114	18.31
See Table 14	-1 footnotes.	•				•			

Table 14-115: Jason Underground Mineral Resource Estimate, September 4, 2024

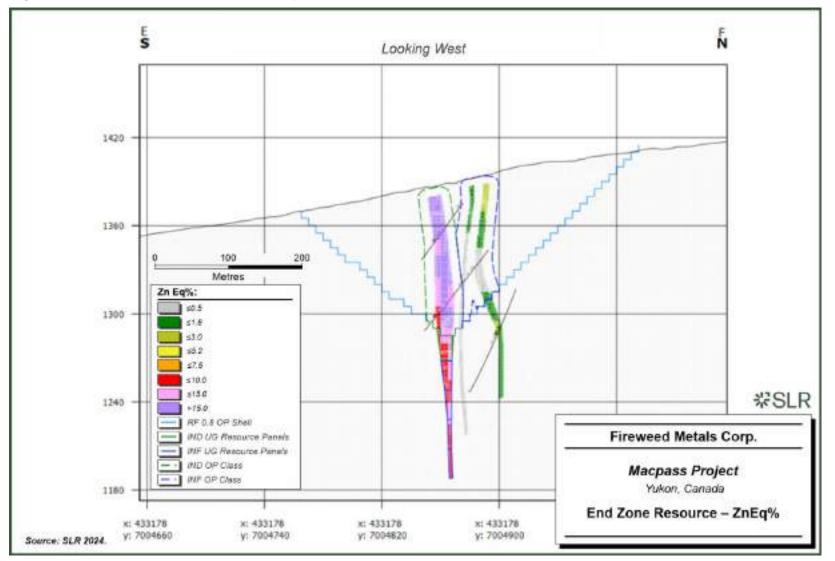
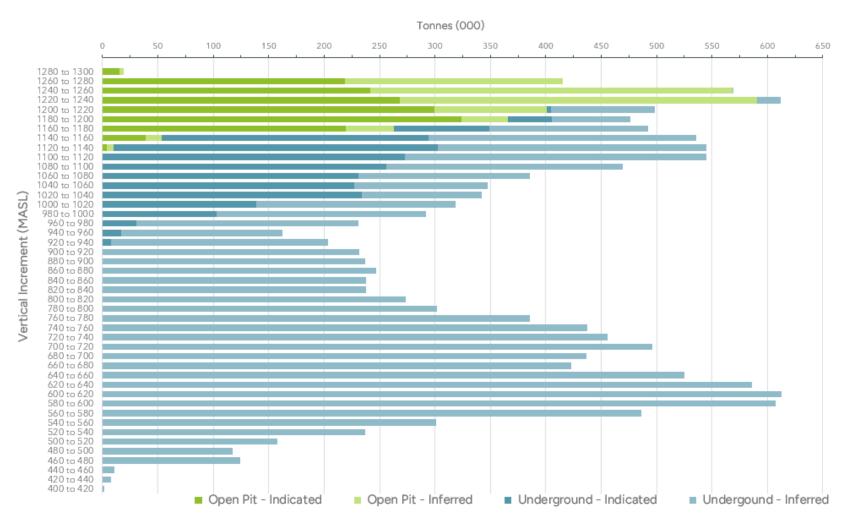
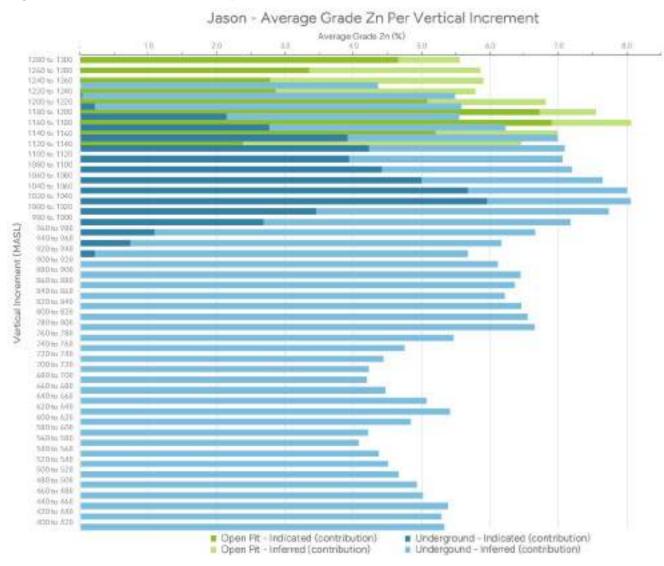
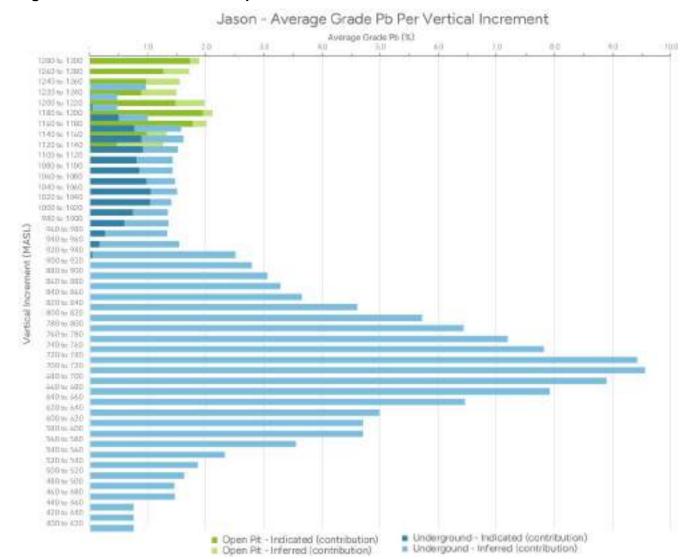

Figure 14-82: Jason Resource – ZnEq%

Figure 14-83: End Zone Resource – ZnEq% [1,350 MASL]

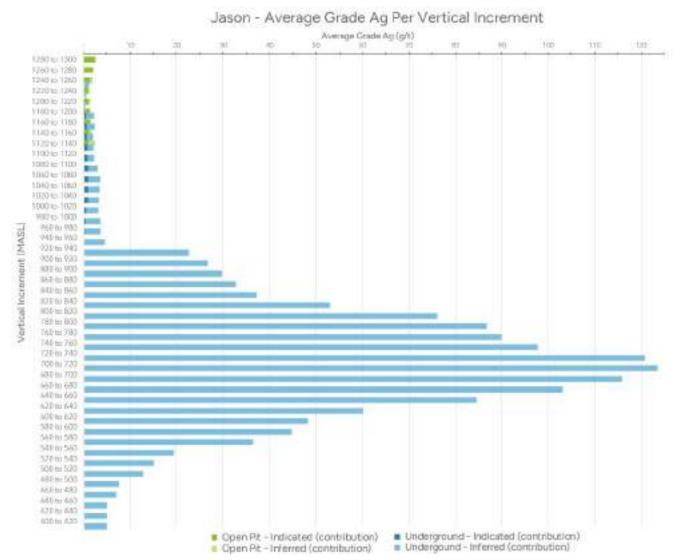

Figure 14-84: End Zone Resource – ZnEq%

14.7.2.1 Tonnage and Grade Distribution by Elevation


The following figures (Figure 14-85 to Figure 14-94) present the open pit and underground mineral resources by tonnes and grade per vertical increment for the Jason and End Zone deposits.


Figure 14-85: Jason Tonnage per Vertical Increment

Jason - Total Tonnes Per Vertical Increment


Figure 14-86: Jason Zinc Grade per Vertical Increment

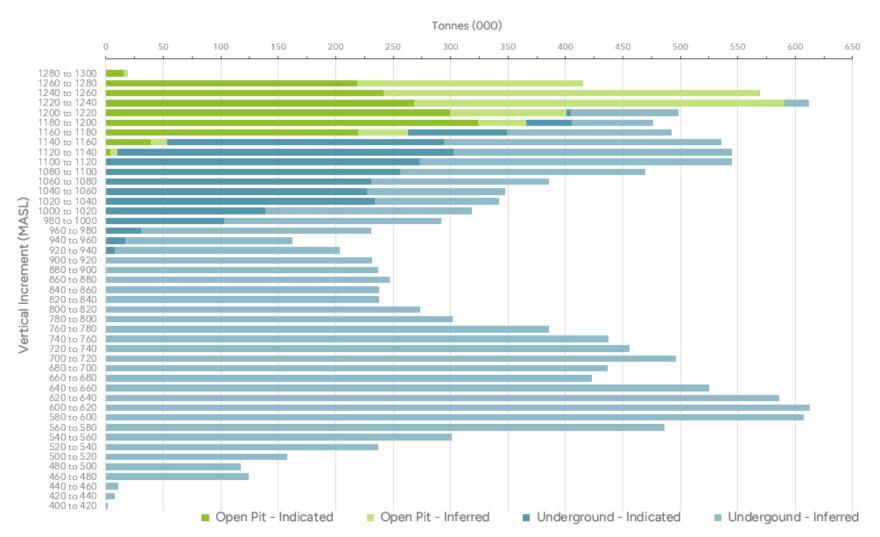


Figure 14-87: Jason Lead Grade per Vertical Increment

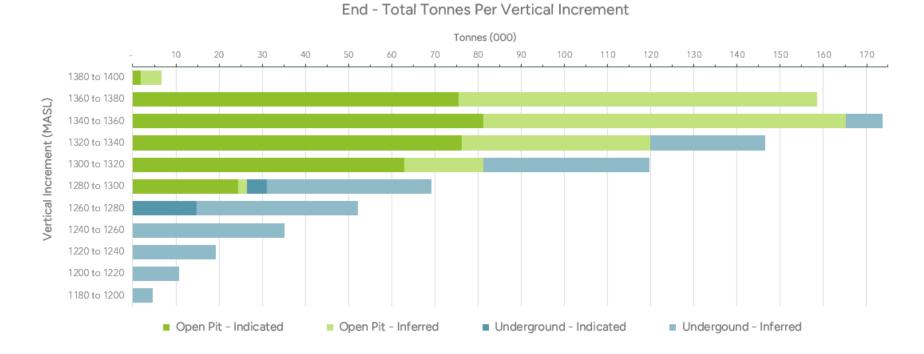

Figure 14-88: Jason Silver Grade per Vertical Increment

Figure 14-89: Jason C\$NSR/t per Vertical Increment

Jason - Total Tonnes Per Vertical Increment

Figure 14-90: End Zone Tonnage per Vertical Increment)

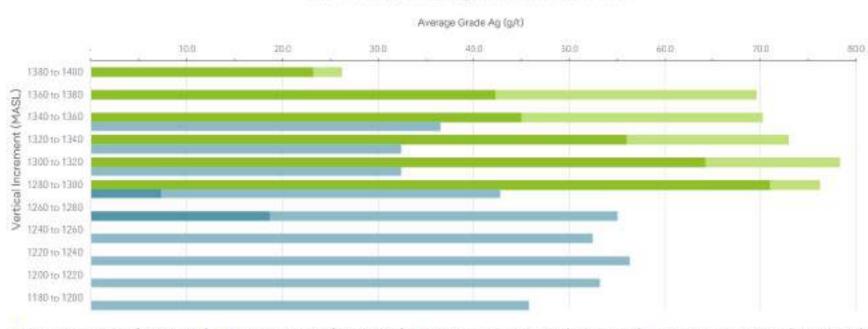
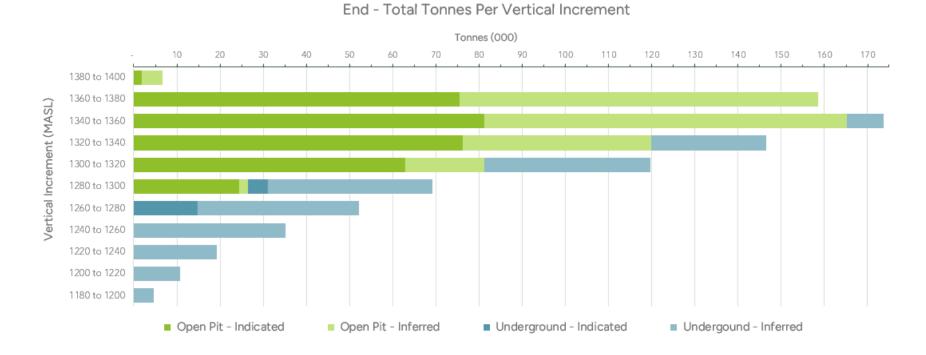


Figure 14-91: End Zone Zinc Grade per Vertical Increment

Open Pit - Indicated (contribution) = Open Pit - Inferred (contribution) = Underground - Indicated (contribution) = Undergound - Inferred (contribution)

Figure 14-92: End Zone Lead Grade per Vertical Increment



End - Average Grade Ag Per Vertical Increment

Figure 14-93: End Zone Silver Grade per Vertical Increment

Open Pit - Indicated (contribution)
 Open Pit - Inferred (contribution)
 Underground - Indicated (contribution)
 Undergound - Inferred (contribution)

Figure 14-94: End Zone C\$NSR/t per Vertical Increment

14.7.2.2 Comparison with Previous Mineral Resource Estimates

A comparison of Mineral Resources from 2018 to 2024 is presented in Table 14-116 (excluding End Zone). Comparing Mineral Resources at September 4, 2024 versus January 10, 2018, the SLR QP notes the following principal changes:

- First time disclosure of Mineral Resources for End Zone.
- Improvements to the geological interpretation that have allowed for the generation of well defined and robust estimation domains. Notable changes for Jason South where new drilling resulted in orientation changes for JSUL and JSLL.
- Two new drill holes added since the previous 2018 MRE supporting interpretation changes.
- New drilling also resulted in the identification of higher silver and lead grades in Jason South.
- Extensions at Jason Main included lower grade intercepts at depth resulting in a decrease in Zn grade for the Inferred material.
- In 2018, metal price assumptions were: US\$1.17/lb Zn, US\$0.99/lb Pb, and US\$16.95/oz Ag and an exchange rate of US\$1 = C\$1.24.
 - Based on these metal prices and associated metallurgical inputs at the time, the Mineral Resources were reported at a \$65 C\$NSR/t block cut-off using no constraining volumes.
- Metal recovery assumptions in 2018 were: 79% Zn, 82% Pb, and 85% Ag (12% to Zn concentrate and 73% to Pb concentrate).
- In 2024, metal price assumptions are: US\$1.40/lb Zn, US\$1.10/lb Pb, and US\$25/oz Ag, and an exchange rate of US\$1 = C\$1.32.
 - Based on these metal prices and associated metallurgical inputs described in Section 14.6.1, the updated Mineral Resources are reported in conceptual open pit shells at a \$30 C\$NSR/t cut-off and a \$112 C\$NSR/t cut-off within underground (UG) mining volumes.
- Metal recovery assumptions in 2024 were: 89% Zn, 75% Pb, and 82% Ag (net to Zn and Pb concentrates)

Area	Year	Class	Mass		G	rade		Metal			
		(N	(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (MIb)	Pb (MIb)	Ag (Moz)	
Jason	2018	Indicated	2.49	10.04	8.25	1.76	2.2	454	97	0.18	
Zone		Inferred	16.21	9.72	5.23	3.39	40.6	1,868	1,211	1.65	
	2024	Indicated	3.80	9.09	7.62	1.86	1.7	638	156	0.21	
		Inferred	11.65	10.40	5.48	4.33	48.2	1,407	1,112	18.05	
	Change	Indicated	34%	-10%	-8%	5%	-29%	29%	38%	16%	
		Inferred	-39%	6%	5%	22%	16%	-33%	-9%	91%	

Table 14-116:	Jason 2024 Mineral	Resources Versus	2018 Mineral Resources
---------------	--------------------	-------------------------	------------------------

14.7.3 Boundary Zone

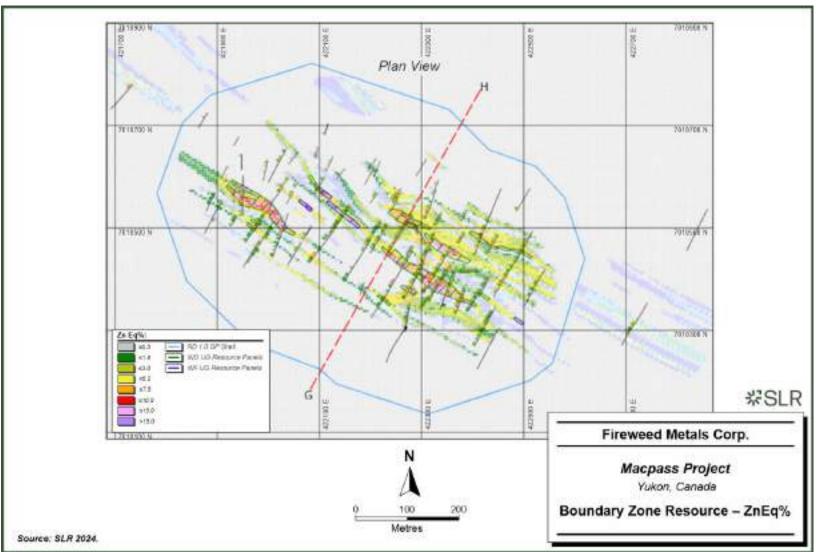
Mineral Resources for Boundary Zone are reported as the Mineral Resource estimation methodologies and classification criteria detailed in this Technical Report. Table 14-117 summarizes the Boundary Zone Mineral Resource estimates by domain for Zn, Pb, and Ag, effective September 4, 2024. Table 14-118 and Table 14-119 provide the Boundary Zone Mineral Resource estimates for Zn, Pb, and Ag within the open pit and underground scenarios, respectively.

Combined Indicated Mineral Resources total 34.32 Mt, at an average grade of 4.87% Zn, 0.55% Pb, and 21.6 g/t Ag, for a total of 3,682 Mlb Zn, 413 Mlb Pb, and 23.83 Moz Ag, respectively. Combined Inferred Mineral Resources total 17.43 Mt, at an average grade of 3.48% Zn, 0.23% Pb, and 9.5 g/t Ag, for a total of 1,337 Mlb Zn, 87 Mlb Pb, and 5.32 Moz Ag, respectively.

Figure 14-95 and Figure 14-96 display a block model cross-section and plan view of the Boundary Zone deposit, highlighting the open pit and underground mining constraints, classification boundaries, and zinc equivalent grades.

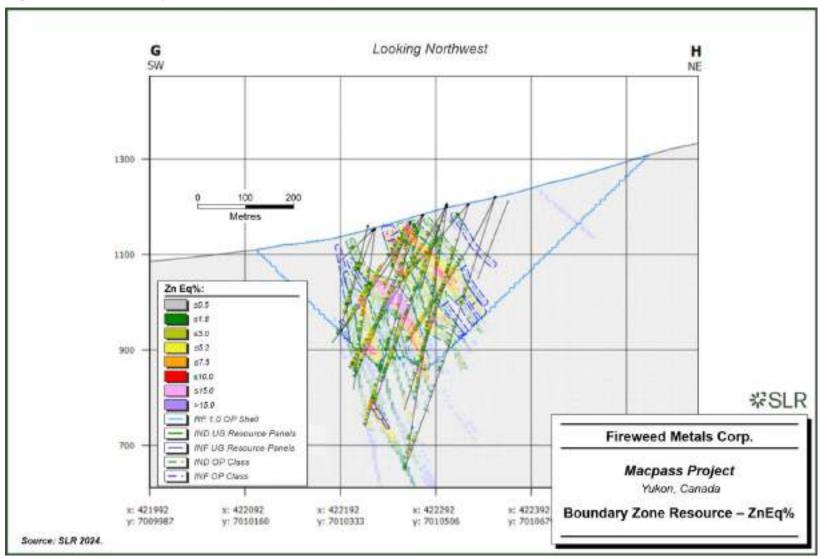
The SLR QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimates.

Class	Area	Mass		Gra	Ide			Metal	
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (Mlb)	Ag (Moz)
Indicated	Massive Sulphide	13.17	8.49	6.89	1.05	41.1	2,001	304	17.42
	Vein	17.63	4.07	3.82	0.23	9.1	1,486	89	5.18
	Halo	3.52	2.73	2.51	0.25	10.8	195	19	1.22
Total Indic	ated	34.32	5.63	4.87	0.55	21.6	3,682	413	23.83
Inferred	Massive Sulphide	2.14	6.12	5.17	0.67	24.7	243	32	1.70
	Vein	11.14	3.70	3.50	0.18	7.7	859	44	2.74
	Halo	4.16	2.68	2.56	0.12	6.6	235	11	0.88
Total Infer	red	17.43	3.75	3.48	0.23	9.5	1,337	87	5.32
See Table 14	-1 footnotes.								


Table 14-117: Boundary Zone Summary of Combined (Open Pit and Underground) Mineral Resources, September 4, 2024

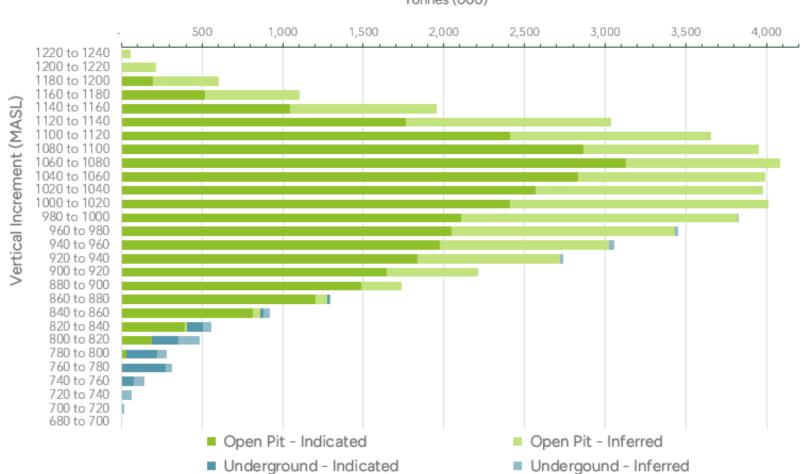
Class	Area	Mass		Gi	ade		Metal		
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (MIb)	Pb (MIb)	Ag (Moz)
Indicated	Massive Sulphide	12.36	8.20	6.63	1.03	40.4	1,805	280	16.05
	Vein	17.63	4.07	3.82	0.23	9.1	1,486	89	5.18
	Halo	3.49	2.75	2.53	0.25	10.8	194	19	1.22
Total Indic	ated	33.48	5.46	4.72	0.53	20.9	3,486	388	22.45
Inferred	Massive Sulphide	1.87	5.79	4.98	0.54	22.3	206	22	1.34
	Vein	10.88	3.61	3.42	0.18	7.5	820	43	2.63
	Halo	4.12	2.70	2.58	0.13	6.6	234	11	0.90
Total Infer	Total Inferred		3.63	3.39	0.21	8.9	1,260	77	4.85
See Table 14-	1 footnotes.								

Table 14-118: Boundary Zone Summary of Open Pit Mineral Resources,September 4, 2024


Table 14-119: Boundary Zone Summary of Underground Mineral Resources,September 4, 2024

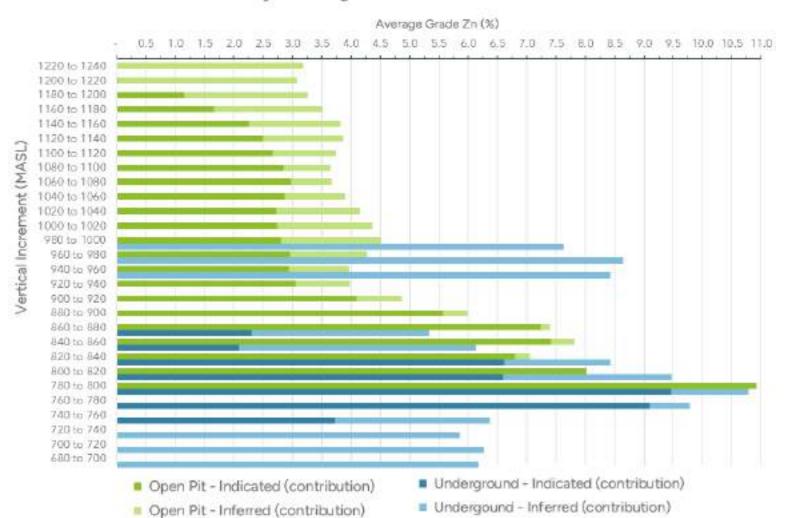
Class	Area	Mass		Gr	ade			Metal	
		(Mt)	ZnEq (%)	Zn (%)	Pb (%)	Ag (g/t)	Zn (Mlb)	Pb (Mlb)	Ag (Moz)
Indicated	Massive Sulphide	0.81	12.95	10.97	1.36	52.8	196	24	1.38
	Vein	-	-	-	-	-	-	-	-
	Halo	0.03	0.25	0.13	0.07	4.9	0	0	5
Total India	cated	0.84	12.46	10.55	1.31	51.0	196	24	1.38
Inferred	Massive Sulphide	0.26	8.49	6.51	1.63	42.4	38	9	0.36
	Vein	0.26	7.16	6.89	0.14	13.6	39	1	0.11
	Halo	0.04	0.31	0.22	0.07	3.5	0	0	0.04
Total Infer	red	0.56	7.35	6.29	0.84	26.6	77	10	0.47
See Table 14	-1 footnotes.								

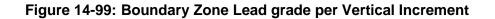
Figure 14-95: Boundary Zone Resource – ZnEq% [1,080 MASL]



14.7.3.1 Tonnage and Grade Distribution by Elevation

The following figures (Figure 14-97 to Figure 14-101) present the open pit and underground mineral resources by tonnes and grade per vertical increment for the Boundary deposit.


Figure 14-97: Boundary Zone Tonnage per Vertical Increment



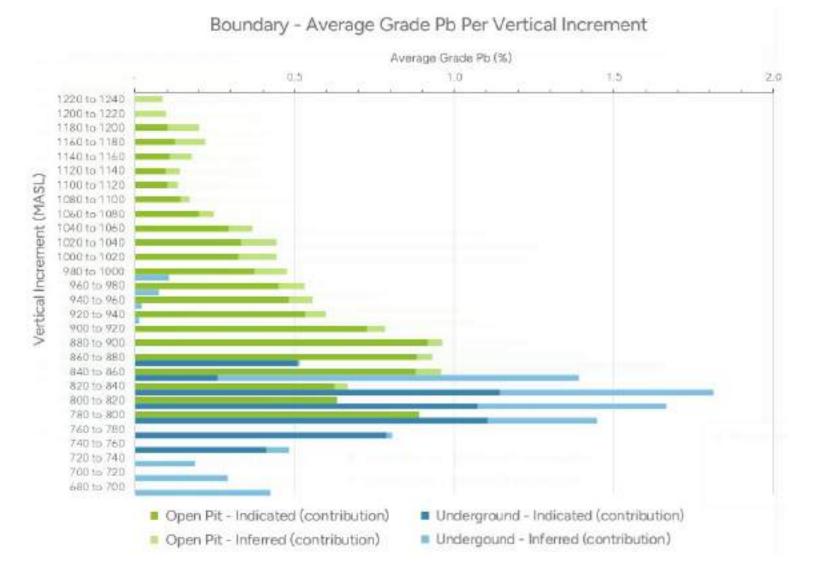
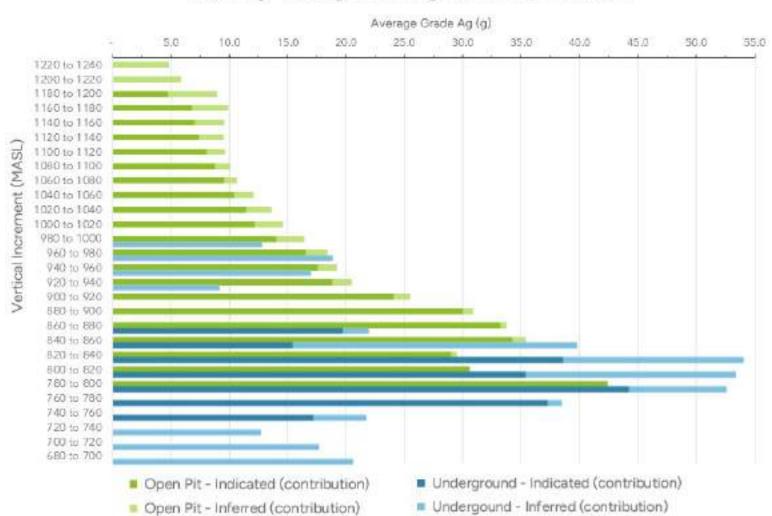
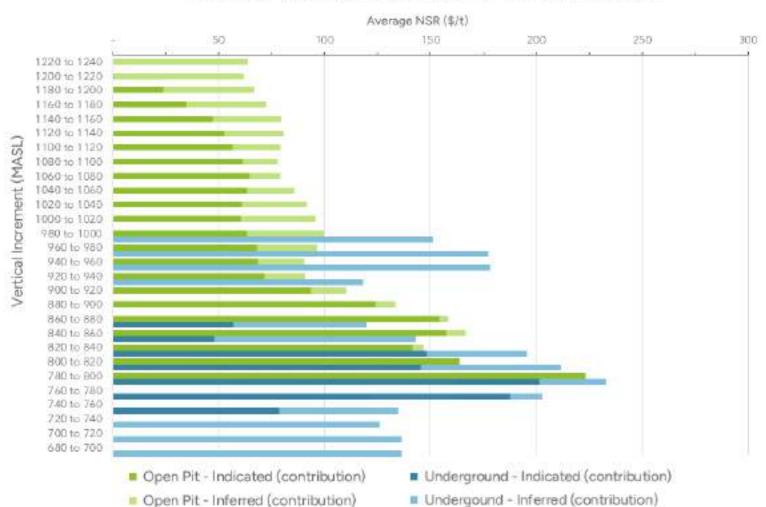

Tonnes (000)

Figure 14-98: Boundary Zone Zinc Grade per Vertical Increment



Boundary - Average Grade Zn Per Vertical Increment



Boundary - Average NSR \$/Tonne Per Vertical Increment

14.7.4 Factors Affecting the Mineral Resource

Mineral Resources, which are not Mineral Reserves, do not have demonstrated economic viability. At the present time, the SLR QP is not aware of any environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues that may have a material impact on the Macpass Project Mineral Resource estimates other than those discussed below.

Factors that may affect the Macpass Project Mineral Resource estimates include:

- Metal price and exchange rate assumptions.
- Changes to the assumptions used to generate the NSR and cut-off grade used for construction of the mineralized wireframe domains.
- Changes to geological and mineralization shape and geological and grade continuity assumptions and interpretations.
- Due to the natural variability inherent with sediment hosted stratiform Zn-Pb-Ag deposits, the presence, location, size, shape, and grade of the actual mineralization located between the existing sample points may differ from the current interpretation. The level of uncertainty in these items is lowest for the Measured Mineral Resource category and is highest for the Inferred Mineral Resource category.
- Changes to the understanding of the current geological and mineralization shapes and geological and grade continuity resulting from acquisition of additional geological and assay information from future drilling or sampling programs.
- Changes in the treatment of high grade zinc, lead or silver values.
- Changes due to the assignment of density values.
- Changes to the input and design parameter assumptions that pertain to the assumptions for creation of underground constraining volumes.
- Changes to the assumed metallurgical recoveries.

14.8 Additional Information

14.8.1 Germanium and Gallium Summary

Gallium and germanium are critical mineral by-products reported alongside the metals of economic interest, zinc, lead, and silver. Fireweed carried out a re-assay program using samples from 2017–2023 drilling and selected historical intervals using a specialized assay method that can quantify gallium and germanium—a closed vessel assay (Bureau Veritas method GC204). Gallium and germanium have lower data density than zinc, lead, and silver even after the re-assay program. As a result, regressions with zinc or zinc and aluminum were used where gallium or germanium assay data was unavailable.

Gallium and germanium do not contribute any value as payable metals or smelter credits in the NSR calculations used to define the Mineral Resource, as shown in Table 14-1 to Table 14-3. Accordingly, they do not contribute to the RPEEE associated with resource category classification. As noted in Section 13.5.3, there is currently no precedence for payment of germanium or gallium in zinc concentrates, however, favourable treatment charges may be negotiated with smelters that recover one or both of these elements.

Table 14-120 summarizes Fireweed's Mineral Resource estimates for gallium and germanium, effective as of October 17, 2024. Table 14-121 provides the Mineral Resource estimates for gallium and germanium within the open pit scenario, while Table 14-122 presents the underground Mineral Resources for gallium and germanium located below the open pit, both effective as of October 17, 2024.

Class	Area	Mass	Gra	ade	Ме	etal
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)
Indicated	Tom	17.52	9.22	5.71	161,500	100,000
	Jason	3.80	8.74	4.76	33,200	18,100
	End Zone	0.34	4.81	6.42	1,600	2,200
	Boundary	34.32	12.19	8.53	418,400	292,600
Total Indica	ated	55.98	10.98	7.38	614,800	412,900
Inferred	Tom	18.94	9.39	5.94	177,800	112,500
	Jason	11.65	6.32	3.36	73,500	39,200
	End Zone	0.44	2.68	3.56	1,200	1,600
Boundary		17.43	8.14	7.39	141,900	128,800
Total Inferr	Total Inferred		8.14	5.82	394,400	282,100

Table 14-120: Summary of Combined (Open Pit and Underground) Mineral Resources,Germanium and Gallium, October 17, 2024

Notes:

1. Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards for Mineral Resources and Mineral Reserves (CIM (2014) definitions) were used for Mineral Resource classification.

2. g/t: grams per tonne; Mlb: million pounds; Moz: million troy ounces; Mt: million metric tonnes.

3. Mineral Resources are reported within conceptual open pit (OP) shells and underground (UG) mining volumes to demonstrate Reasonable Prospects for Eventual Economic Extraction (RPEEE), as

(Class	Area	Mass	Gra	ade	Ме	tal
			(Mt)	Ge	Ga	Ge	Ga
				(g/t)	(g/t)	(kg)	(kg)
	a Mineral l reporting p may consi	Resource. Note ourposes only ar	the concept nd are not in OP mining,	ual OP sho dicative of or a combi	ell and UG the proposination of b	e OP shell or UG volun volumes are used for I sed mining method; fut oth. Mineral Resources	Aineral Resource ure mining studies
4.		es are rounded e to rounding.	to the appro	priate nun	nber of sigr	ificant figures; conseq	uently, sums may not
5.						ed density measureme present, a regression	
6.						of 45°, Revenue Facto eturn (NSR) cut-off of 0	
7.	lengths (L) and End Z	of 10 m, with 1	0 m H and 5 H by 20 m L	5 m L sub-s with 10 m	shapes and sub-shape	orting panels with heig I minimum widths of 2 s and a minimum width	m at Tom, Jason,
8.	and US\$2		s exchange	rate of 1.3	2, and a nu	prices of US\$1.40/lb 2 mber of operating cost ain.	
9.	related to been calcu	each deposit or lated using the	mineralizatio mass weigh	on domain Ited averag	. For report ge of the Zr	the NSR calculation an ing subtotals and totals nEq block values of eac eporting volumes.	s, ZnEq values have
10.	drilling dat 2024. The	a up to and inclu	uding holes	drilled in 2 data from	023 with a holes drilled	mber 4, 2024, and the final database cut-off c d in 2024. The effective 17, 2024.	late of June 23,
11.	considerat is also no Indicated of are applied applied to reasonably	ions applied to t certainty that the categories throug d. The Inferred N an Indicated Mir	hem that wo ese Inferred gh further di Aineral Reso neral Resou the majority	build enable Mineral Re rilling, or in burce in the rce and me of the Infe	e them to b esources w ito Mineral is estimate ust not be o rred Minera	geologically to have ec e categorized as Miner ill be converted to the Reserves, once econo has a lower level of co converted to a Mineral al Resource could be u	al Reserves. There Measured and mic considerations nfidence than that Reserve. It is

Class	Area	Mass (Mt)	Grade		Metal	
			Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)
Indicated	Tom	13.63	8.43	5.35	114,900	72,900
	Jason	1.63	8.51	4.22	13,900	6,900
	End Zone	0.32	4.97	6.68	1,600	2,200
	Boundary	33.48	11.85	8.49	396,800	284,300
Total Indicated		49.05	10.75	7.46	527,200	366,200
Inferred	Tom	4.20	8.71	6.40	36,600	26,900
	Jason	1.06	6.84	3.37	7,200	3,600
	End Zone	0.24	3.47	4.65	800	1,100
	Boundary	16.88	7.92	7.33	133,700	123,600
Total Inferred		22.38	7.97	6.94	178,400	155,200
Note: See Table 14-120 footnotes.						

Table 14-121: Summary of Open Pit Mineral Resources,Germanium and Gallium, October 17, 2024

Table 14-122: Summary of Underground Mineral Resources,Germanium and Gallium, October 17, 2024

Class	Area	Mass (Mt)	Grade		Metal	
			Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)
Indicated	Tom	3.90	11.96	6.98	46,600	27,200
	Jason	2.17	8.92	5.17	19,300	11,200
	End Zone	0.02	2.28	2.19	40	40
	Boundary	0.84	25.64	9.86	21,600	8,300
Total Indicated		6.93	12.65	6.75	87,600	46,700
Inferred	Tom	14.74	9.58	5.81	141,200	85,600
	Jason	10.59	6.27	3.36	66,300	35,600
	End Zone	0.20	1.73	2.26	400	500
	Boundary	0.56	14.72	9.32	8,200	5,200
Total Inferred		26.08	8.28	4.86	216,000	126,900
Note: See Table 14-120 footnotes.						

The SLR QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimates.

14.8.1.1 Tom

Table 14-123 summarizes the Tom Mineral Resource estimates by domain for Ge and Ga, effective October 17, 2024. Table 14-124 and Table 14-125 provide the Tom Mineral Resource estimates for Ge and Ga within the open pit and underground scenarios, respectively.

Combined Indicated Mineral Resources total 17.53 Mt, at an average grade of 9.22 g/t Ge and 5.71 g/t Ga, for a total of 161,500 kg and 100,000 kg, respectively. Combined Inferred Mineral Resources for germanium and gallium total 18.94 Mt, at an average grade of 9.39 g/t Ge and 5.94 g/t Ga, for a total of 177,800 kg and 112,500 kg, respectively.

Class	Area	Mass	Grade		Metal	
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)
Indicated	Tom West	15.92	9.09	5.67	144,600	90,300
	Tom Southeast	-	-	-	-	-
	Tom East	1.61	10.52	6.06	16,900	9,700
Total Indicated		17.53	9.22	5.71	161,500	100,000
Inferred	Tom West	13.58	8.08	5.76	109,700	78,300
	Tom Southeast	4.32	11.92	6.27	51,500	27,100
	Tom East	1.03	15.99	6.93	16,500	7,200
Total Inferred		18.94	9.39	5.94	177,800	112,500
Note: See Table 14-120 footnotes.						

Table 14-123: Tom Summary of Combined (Open Pit and Underground) Mineral Resources, Germanium and Gallium, October 17, 2024

Table 14-124: Tom Summary of Open Pit Mineral Resources,Germanium and Gallium, October 17, 2024

Class	Area	Mass	Grade		Metal	
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)
Indicated	Tom West	12.50	8.31	5.26	103,800	65,800
	Tom Southeast	-	-	-	-	-
	Tom East	1.13	9.82	6.29	11,100	7,100
Total Indicated		13.63	8.43	5.35	114,900	72,900
Inferred	Tom West	3.20	6.32	6.19	20,200	19,800
	Tom Southeast	-	-	-	-	-
	Tom East	1.00	16.35	7.06	16,400	7,100
Total Inferred		4.20	8.71	6.40	36,600	26,900
Note: See Table 14-120 footnotes.						

Table 14-125: Tom Summary of Underground Mineral Resources, Germanium and
Gallium, October 17, 2024

Class	Area	Mass	Gra	ade	Metal		
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)	
Indicated	Tom West	3.42	11.93	7.18	40,800	24,500	
	Tom Southeast	-	-	-	-	-	
	Tom East	0.48	12.15	5.53	5,800	2,700	
Total Indic	ated	3.90	11.96	6.98	46,600	27,200	
Inferred	Tom West	10.38	8.62	5.63	89,500	58,500	
	Tom Southeast	4.32	11.92	6.27	51,500	27,100	
	Tom East	0.03	3.93	2.53	100	100	
Total Inferred		14.74	9.58	5.81	141,200	85,600	
Note: See Tat	ble 14-120 footnotes.	-					

14.8.1.2 Jason and End Zone

Table 14-126 summarizes the Jason and End Zone Mineral Resource estimates by domain for Ge and Ga, effective October 17, 2024. Table 14-127 and Table 14-128 provide the Jason and End Zone Mineral Resource estimates for Ge and Ga within the open pit and underground scenarios, respectively.

Combined Indicated Mineral Resources total 4.14 Mt, at an average grade of 8.42 g/t Ge and 4.90 g/t Ga, for a total of 34,900 kg and 20,300 kg, respectively. Combined Inferred Mineral Resources for germanium and gallium total 12.09 Mt, at an average grade of 6.19 g/t Ge and 3.37 g/t Ga, for a total of 74,700 kg and 40,700 kg, respectively.

Class	ass Area		Gra	ade	Metal			
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)		
Indicated	Jason Main	3.80	8.74	4.76	33,200	18,100		
	Jason South	-	-	-	-	-		
	End Zone	0.34	4.81	6.42	1,600	2,200		
Total Indic	ated	4.14	8.42	4.90	34,900	20,300		
Inferred	Jason Main	4.06	7.45	3.72	30,200	15,100		
	Jason South	7.59	5.71	3.17	43,300	24,100		
	End Zone	0.44	2.68	3.56	1,200	1,600		
Total Inferred		12.09	6.19	3.37	74,700	40,700		
Note: See Tab	ole 14-120 footnote	s.						

 Table 14-126: Jason and End Zone Summary of Combined (Open Pit and Underground)

 Mineral Resources, Germanium and Gallium, October 17, 2024

Table 14-127: Jason and End Zone Summary of Open PitMineral Resources, Germanium and Gallium,October 17, 2024

Class	Area	Mass	Gra	ade	Metal		
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)	
Indicated	Jason Main	1.63	8.51	4.22	13,900	6,900	
	Jason South	-	-	-	-	-	
	End Zone	0.32	4.97	6.68	1,600	2,200	
Total Indic	ated	1.95	7.93	4.62	15,500	9,000	
Inferred	Jason Main	1.06	6.84	3.37	7,200	3,600	
	Jason South	-	-	-	-	-	
	End Zone	0.24	3.47	4.65	800	1,100	
Total Inferred		1.30	6.22	3.61	8,000	4,700	
Note: See Tab	ble 14-120 footnote	S.					

Table 14-128: Jason and End Zone Summary of Underground Mineral Resources,Germanium and Gallium, October 17, 2024

Class	Area	Mass	Gra	ade	Metal		
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)	
Indicated	Jason Main	2.17	8.92	5.17	19,300	11,200	
	Jason South	-	-	-	-	-	
	End Zone	0.02	2.28	2.19	40	40	
Total Indic	ated	2.19	8.86	5.14	19,400	11,200	
Inferred	Jason Main	3.00	7.67	3.85	23,000	11,500	
	Jason South	7.59	5.71	3.17	43,300	24,100	
	End Zone	0.20	1.73	2.26	400	500	
Total Inferred		10.79	6.18	3.34	66,700	36,100	
Note: See Tat	ble 14-120 footnote	s.					

14.8.1.3 Boundary Zone

Table 14-129 summarizes the Boundary Zone Mineral Resource estimates by domain for Ge and Ga, effective October 17, 2024. Table 14-130 and Table 14-131 provide the Boundary Zone Mineral Resource estimates for Ge and Ga within the open pit and underground scenarios, respectively.

Combined Indicated Mineral Resources total 34.32 Mt, at an average grade of 12.19 g/t Ge and 8.53 g/t Ga, for a total of 418,400 kg and 292,600 kg, respectively. Combined Inferred Mineral Resources for germanium and gallium total 17.43 Mt, at an average grade of 8.14 g/t Ge and 7.39 g/t Ga, for a total of 141,900 kg and 128,800 kg, respectively.

Table 14-129: Boundary Zone Summary of Combined (Open Pit and Underground)Mineral Resources, Germanium and Gallium, October 17, 2024

Class	Area	Mass	Gra	ade	Ме	etal
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)
Indicated	Massive Sulphide	13.17	17.23	9.76	226,900	128,600
	Vein	17.63	9.57	7.94	168,700	139,900
	Halo	3.52	6.50	6.86	22,900	24,100
Total India	ated	34.32	12.19	8.53	418,400	292,600
Inferred	Massive Sulphide	2.14	11.46	9.03	24,500	19,300
	Vein	11.14	8.07	7.40	89,900	82,400
	Halo	4.16	6.62	6.52	27,500	27,100
Total Inferred		17.43	8.14	7.39	141,900	128,800
Note: See Ta	ble 14-120 footno	tes.	•		•	

Table 14-130: Boundary Zone Summary of Open Pit Mineral Resources,Germanium and Gallium, October 17, 2024

Class	Area	Mass	Gra	ade	Metal		
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)	
Indicated	Massive Sulphide	12.36	16.61	9.74	205,300	120,400	
	Vein	17.63	9.57	7.94	168,700	139,900	
	Halo	3.49	6.55	6.88	22,900	24,000	
Total Indic	ated	33.48	11.85	8.49	396,800	284,300	
Inferred	Massive Sulphide	1.87	10.81	9.03	20,200	16,900	
	Vein	10.88	7.90	7.33	86,000	79,800	
	Halo	4.12	6.67	6.54	27,500	27,000	
Total Inferred		16.88	7.92	7.33	133,700	123,600	
Note: See Tat	ole 14-120 footnote	S.					

Table 14-131: Boundary Zone Summary of Underground Mineral Resources,Germanium and Gallium, October 17, 2024

Class	Area	Mass	Gra	ade	Metal		
		(Mt)	Ge (g/t)	Ga (g/t)	Ge (kg)	Ga (kg)	
Indicated	Massive Sulphide	0.81	26.63	10.07	21,600	8,200	
	Vein	0.00	0.00	0.00	0	0	
	Halo	0.03	0.83	4.42	30	100	
Total Indic	ated	0.84	25.64	9.86	21,600	8,300	
Inferred	Massive Sulphide	0.26	16.07	9.08	4,200	2,400	
	Vein	0.26	15.25	10.36	3,900	2,700	
	Halo	0.04	0.88	3.63	30	100	
Total Inferred		0.56	14.72	9.32	8,200	5,200	
Note: See Ta	ble 14-120 footnote	es.					

15.0 Mineral Reserve Estimates

16.0 Mining Methods

17.0 Recovery Methods

18.0 Project Infrastructure

19.0 Market Studies and Contracts

20.0 Environmental Studies, Permitting, and Social or Community Impact

21.0 Capital and Operating Costs

22.0 Economic Analysis

23.0 Adjacent Properties

The Macpass property lies within the Selwyn Basin, which hosts numerous sediment-hosted zinc-lead-silver deposits and occurrences. The Property is also within the Tombstone-Tungsten Belt, a belt of Cretaceous intrusions that are in some cases associated with reduced intrusion-related gold systems, orogenic gold, gold skarn, and/or tungsten skarn occurrences. Two nearby properties, Fireweed's Mactung Property and Snowline Gold Corp.'s (Snowline) Rogue Property, have recent MREs and ongoing exploration and development work.

The SLR QP has not independently verified the information below, and this information is not necessarily indicative of the mineralization at the Mactung and Rogue projects.

23.1 Mactung Property (Mactung Deposit)

The 37 km² Mactung property is immediately north of the Macpass claims (Figure 23-1). It is an advanced stage tungsten project with extensive historical drilling, engineering, metallurgy, geotechnical, and environmental baseline data collected by previous operators. The property is located in the traditional territories of the Kaska Nation and First Nation of Na-Cho Nyäk Dun, and the Sahtú Settlement Area.

Fireweed acquired the Mactung property from the Government of the Northwest Territories (GNWT) in 2022. The Mactung tungsten deposit has a Mineral Resource of 41.5 Mt Indicated at 0.73% WO₃ and 12.2 Mt Inferred at 0.59% WO₃, making it the largest high-grade tungsten deposit in the world at the time of writing. The MRE and accompanying technical report were prepared by Garth Kirkham, P.Geo of Kirkham Geosystems Ltd (Kirkham 2023).

Access to Mactung is via the same Macmillan Pass aerodrome and an 11 km access road off the North Canol Road. Infrastructure includes an extensive exploration road and trail network, clearing around the historical camp and core processing area and adit, and 1,200 m lateral underground development that facilitated underground exploration drilling and bulk sampling in the 1970s and 1980s.

Tungsten skarn mineralization at Mactung is mostly scheelite (CaWO₄) and is dominated by calcic mineral assemblages associated with abundant pyrrhotite that developed within permeable limestone units of the Cambrian-Ordovician host rocks near the contract with a Cretaceous-age granite intrusion. Historical work by previous operators included 38,000 m of drilling. Ongoing work includes a metallurgical test program, and environmental and field studies to bolster understanding of the project.

In mid-2014, the Yukon Environmental and Socio-economic Assessment Board issued a positive screening report for the mine project and recommended it proceed without review, subject to terms and conditions. The federal and Yukon governments subsequently varied certain terms and conditions, as documented in each Decision Document, which provided direction to advance licence applications.

23.2 Rogue Property (Valley Deposit)

Snowline's 1,125 km² Rogue Property is approximately 15 km northwest of the Macpass property (Figure 23-1). At its centre lies the Valley gold deposit, approximately 60 km northwest of Boundary Zone. The property is located in the traditional territories of the First Nation of Na-Cho Nyäk Dun.


Access to the Rogue Property is by air to local airstrips from the closest town of Mayo, with helicopter and float plane access to different parts of the project area. The locally overgrown

110 km Plata Winter Access Road, built to access the past producing Plata silver mine, connects the southernmost part of the property to the North Canol Road.

The Rogue Project lies in the Tombstone Gold Belt of the Tintina Gold Province, a large metallogenic region that extends approximately 2,000 km from southeast Yukon to southeast Alaska. Gold mineralization at the Valley deposit is typical of reduced intrusion-related gold systems, hosted in quartz veins associated with Cretaceous plutons that intruded Ordovician-Devonian host rocks, commonly producing hornfels halos. Other styles of mineralization on the property include skarns and orogenic gold.

Snowline acquired the Rogue Property in 2021. Ongoing work includes regional exploration and diamond drilling, as well as preliminary metallurgical studies. An inaugural Mineral Resource Estimate for the Valley Deposit includes 75.8 Mt Indicated at 1.66 g/t Au and 81.0 Mt Inferred at 1.25 g/t Au (Burrel et al. 2024).

24.0 Other Relevant Data and Information

No additional information or explanation is necessary to make this Technical Report understandable and not misleading.

25.0 Interpretation and Conclusions

25.1 Geology and Mineral Resources

- The Mineral Resources for the Macpass Project comprise four distinct deposits: Tom, Jason, End Zone, and Boundary Zone.
- The deposit type at the Macpass Project can be broadly described as stratiform, stratabound, sediment-hosted zinc-lead-silver-barite deposits.
- The current Mineral Resource estimate includes the initial disclosure of technical supporting information for the Boundary Zone deposit Resources.
- The current Mineral Resource estimate also includes Fireweed's first-time disclosure of technical supporting information for the End Zone deposit Resources.
- The total combined Mineral Resources of the four deposits comprising the Macpass Project are estimated to total approximately 55.98 Mt at 7.27% Zinc Equivalent (ZnEq) (5.50% zinc, 1.58% lead, and 24.2 g/t silver) in the Indicated Mineral Resource category and approximately 48.46 Mt at 7.48% ZnEq (5.15% zinc, 2.08% lead, and 25.3 g/t silver) in the Inferred Mineral Resource category.

25.2 Mineral Processing and Metallurgical Testing

- The most recent metallurgical test program on Tom and Jason was completed in 2018. The 2018 test program was carried out at Base Metallurgical Laboratories Ltd. (Base Met) in Kamloops, British Columbia (Project No. BL0236) and evaluated both the Tom and Jason deposits. An earlier test program, conducted in 2012 by G&T Metallurgical Services in Kamloops, British Columbia focused solely on Tom.
- In 2022, an initial investigation was completed on Boundary Zone (BL0755) and in 2023 on Boundary Zone Massive Sulphides (BL1140). The test programs included comminution, mineralogy, and flotation. Open circuit tests were completed on all of the samples with a focus on producing zinc concentrates.
- Tom and Jason and Boundary Zone material follows a similar flowsheet that includes comminution and sequential flotation to produce saleable concentrates. The Tom and Jason flowsheet includes a primary grind targeting 80% passing (P₈₀) 50 microns, lead flotation to produce a concentrate followed by zinc flotation to produce a zinc concentrate. Boundary Zone will utilize the same flowsheet with a coarser primary grind P₈₀ of 75 microns with either lead flotation to produce a lead concentrate or pre-float utilizing the lead rougher circuit to reduce the carbon in the feed to the zinc flotation circuit. The target regrind for lead and zinc for all zones was targeted at P₈₀ of 15 microns and 25 microns, respectively.
- The inductively coupled plasma (ICP) analysis of the concentrates indicated that silica may be a potential penalty element at Tom and Jason. The Boundary Zone samples had elevated levels of cadmium, mercury, and antimony that may incur penalties and may require blending to reduce the amounts in the zinc concentrate.
- To reflect a conceptual mine plan, a ratio of 65% Tom composite and 35% Jason composite were used to create the Tom & Jason (T&J) composite. The results from the T&J composite locked cycle tests (LCTs) reported a lead grade of 61.5% Pb with a recovery of 75%. The zinc concentrate graded 58.4% Zn with an 89% recovery.

An average of the open circuit flotation tests completed on Boundary Zone material produced a lead concentrate grade of 41.8% Pb recovering 52% (only two samples had lead head grades high enough to produce a concentrate) and 81% Zn was recovered to the zinc concentrate with a grade of 54.8%. A lead concentrate was produced for Boundary Zone massive sulphide domain for sample NB21-001-MS-001 which produced a lead grade of 41.6% Pb at a recovery of 30.4%. The average of the Boundary Zone massive sulphide open circuit zinc flotation tests completed on the two composites reported a grade and recovery of 51.0% Zn and 84%, respectively.

26.0 Recommendations

26.1 Geology and Mineral Resources

- 1. Continue to adopt a balanced approach to evaluating resource expansion targets, weighing the costs and benefits of near-surface opportunities at Boundary Zone while considering the deeper potential at Tom and Jason.
- 2. Continue to explore fault offsets at Boundary Zone to better quantify the shape and extent of massive to semi-massive sulphide mineralization in the BZUZ and BZPZ zones.
- 3. Drill strike extensions to the northwest and at depth at Boundary Zone, focusing on followups to holes NB21-003, NB21-004, NB23-029, and NB20-009.
- 4. Consider drilling deeper holes at Tom West and Tom Southeast to explore the potential for mineralization expansion at depth.
- 5. Consider conducting additional drilling at Jason South, targeting down-dip extensions and target faulted areas within the Jason South deposit to improve the understanding of fault positions and mineralization offsets.
- 6. Consider twinning historical drill holes in mineralized areas where zinc, lead, or silver assays were not previously conducted, or where core loss occurred due to soft sulphides, to enhance data quality and improve confidence in local grade estimates.
- 7. Continuously review slope angles as new data is collected to ensure that parameters reflect any changes in geological and geotechnical conditions. This review should incorporate rock quality designation (RQD) data from new drilling, insights from geological modelling that identify new faults, and findings from completed geotechnical drilling or studies.
- 8. Continue assaying potential penalty elements alongside primary payable elements to enable their future integration into the resource estimation workflow. This will support ongoing metallurgical test work and enhance understanding of the various mineralization styles at the Macpass Project.
- 9. Ensure sufficient sample drying time prior to conducting density measurements to maintain the accuracy of the results.

The SLR QP notes that as of the effective date of this Technical Report, many of the exploration recommendations have been addressed during the summer 2024 drill program at the Macpass Project, which included over 16,013 m of drilling across 49 holes. The drilling targeted step-out areas at known zones, including Tom, Jason, and Boundary Zone, as well as new regional targets. In addition to drilling, the 2024 budget supported a comprehensive regional exploration program, involving ground gravity surveys, prospecting, soil sampling, and airborne geophysical surveys utilizing LiDAR and VTEM-magnetics. Data from these activities will be analyzed in the coming months to guide future exploration efforts and establish the detailed 2025 budget. Fireweed anticipates that the 2025 drilling campaign will be approximately 20,000 m of diamond drilling with a preliminary budget of \$22M. Fireweed has also initiated a geometallurgical test program to better characterize the metallurgical variability of the mineralized domains at the Tom, Jason, End Zone, and Boundary Zone deposits with all results currently pending.

26.2 Mineral Processing and Metallurgical Testing

- 1. Conduct chemical analysis and mineral textural review of variability samples selected from Tom, Jason, End Zone, and Boundary Zone. The samples are to be discrete continuous intervals of drill core that are spatially representative based on the areas to be mined and provide variability in grade.
- 2. Create global composites from the variability samples for flowsheet validation and optimization.
- 3. Run the variability samples through the optimized flowsheet to provide additional confidence in the metallurgical response of the mineralized zones. The samples will be subjected to mineralogy, comminution test work, and flotation tests including LCTs.
- 4. Include dewatering tests to assess settling and filtration properties as well as tailings generation for physical and chemical evaluation.

27.0 References

- Abbott, J.G., and Turner, R.J. 1991. Character and paleotectonic setting of Devonian stratiformhosted Zn, Pb, Ba deposits, Macmillan Fold Belt, Yukon. In Abbott, J.G. and Turner, R.J.W. (eds) Mineral Deposits of the Northern Canadian Cordillera, Yukon – Northeast British Columbia, Field Trip 14, Geological Survey of Canada Open File 2169, pp. 99-136.
- Abzalov, M. 2008. Quality control of assay data: A review of procedures for measuring and monitoring precision and accuracy. Exploration and Mining Geology, 17, 3-4, pp. 131-144.
- Arne, D. and McGarry, L. 2018. NI 43-101 Technical Report on the Macmillan Pass Zinc-Lead-Silver Project, Watson Lake and Mayo Mining Districts, Yukon Territory, Canada. January 10, 2018.
- Base Metallurgical Laboratories. 2018. Preliminary Metallurgical Assessment MacMillan Pass BL0236, prepared for Fireweed Zinc, May 8, 2018.
- Base Metallurgical Laboratories. 2022. Metallurgical Testing of the Fireweed Boundary Zone BL0755, prepared for Fireweed Metals Corp., September 9, 2022.
- Base Metallurgical Laboratories. 2023. Compilation of test work results for BL1140, prepared for Fireweed Metals Corp.
- Burrel, H., Haggarty, S.C., and Redmond, D.J., 2024. Rogue Project, NI 43-101 Technical Report and Mineral Resource Estimate, Yukon Territory, Canada. May, 15, 2024.
- Canadian Council of Ministers of the Environment (CCME) Aquatic Life Guidelines https://ccme.ca/en/resources/water-aquatic-life (accessed September 29, 2024).
- Canadian Institute of Mining, Metallurgy and Petroleum (CIM). 2014. CIM Definition Standards for Mineral Resources and Mineral Reserves, adopted by the CIM Council on May 10, 2014.
- Carne, R.C., and Cathro, R.J. 1982. Sedimentary exhalative (SEDEX) zinc-lead-silver deposits, northern Canadian Cordillera. Canadian Institute of Mining Bulletin, 75, pp. 66-78.
- CIM. 2019. CIM Estimation of Mineral Resources & Mineral Reserves Best Practice Guidelines, adopted by the CIM Council on November 29, 2019.
- Ensero Solutions Canada Inc. [Ensero]. 2023. Review of Tom Adit Discharge Water Quality Twelve Years Post-Adit Plug Installation. Report prepared for Fireweed Metals Corp., March 28, 2023. Available at https://apps.gov.yk.ca/waterline/ under Water Licence QZ19-058-1.
- Ensero Solutions Canada Inc. [Ensero]. 2024. 2023 Monitoring and Surveillance Annual Report, Tom Property, Water Licence QZ19-058. Prepared for Fireweed Metals Corp. March 25, 2024. Available at https://apps.gov.yk.ca/waterline/ under Water Licence QZ19-058-1.
- Fireweed Metals. 2018. Fireweed Zinc Files Preliminary Economic Assessment for its Macmillan Pass Project on SEDAR [Press release]. July 9, 2018. Accessed from <u>https://fireweedmetals.com/fireweed-zinc-files-preliminary-economic-assessment-for-its-macmillan-pass-project-on-sedar/.</u>

- Fireweed Metals. 2022. Fireweed to Rebrand as "Fireweed Metals Corp." to Reflect Its Emergence as a Leading Critical Minerals. June, 22, 2022. Accessed from company filings on SEDAR+ at <u>www.sedarplus.ca</u>.
- Fireweed Metals Corp. Management's Discussion and Analysis for the Three Months Ended March 31, 2024. Prepared as of May 21, 2024. Accessed from company filings on SEDAR+ at <u>www.sedarplus.ca</u>.
- Fireweed Metals. 2024. Fireweed Announces New Discovery at the Popcorn Target [Press Release]. October 8, 2024. Accessed from company filings on SEDAR+ at <u>www.sedarplus.ca</u>.
- Gartner Lee Limited. 2006. Preliminary Environmental Investigation of the Jason Property, Macmillan Pass, Yukon.
- Gartner Lee Limited. 2006. 2005 Monitoring Well Drilling Program, and Acid Base Accounting, Tom Valley Property, MacMillan Pass, Yukon. Draft report prepared for Hudson Bay Mining and Smelting Co. Ltd.
- Goodfellow, W.D., Godfrey, S.N., McCracken, A.D., Lenz, A.C. and Gregoire, D.C. 1992. Geochemical anomalies near the Ordovician-Silurian boundary, Northern Yukon Territory. Historical Biology, 6, 1, pp. 1-23.
- Goodfellow, W.D., and Franklin, J.M. 1993. Geology, mineralogy, and chemistry of sedimenthosted clastic massive sulphides in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Economic Geology, 88, 8.
- Goodfellow, W.D. 2007. Base Metal Metallogeny of the Selwyn Basin, Canada. In Goodfellow W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Survey of Canada, Mineral Deposits Division, Special Publication No. 5, pp. 553-579.
- Grema, H.M., Magnall, J.M., Gleeson, S.A., Milton, J.E., Wudarska, A., Schleicher, A.M., and Schulz, H.M. 2024. Mineralogy and paragenesis of the Boundary Zone Zn-Pb+/-Ag prospect, Yukon, Canada, Draft manuscript submitted to Economic Geology. 41 p., Potsdam, Brandenburg, Germany.
- Hart, C.J., Mair, J.L., Goldfarb, R.J. and Groves, D.I. 2004. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 95, 1-2, pp. 339-356.
- Makarenko, M., McLeod, K., Levy, M., Arne, D., McGarry, L., Embree, K. 2018. NI 43-101 Technical Report Macmillan Pass Project Yukon Territory, Canada. Effective date July 2018. Prepared by JDS Consultants.
- Kirkham, G. 2023. NI 43-101 Technical Report, Mactung Project, Yukon, prepared for Fireweed Metals by Kirkham Geosystems. July, 28, 2023.
- Kwong, Y.T.J. and W.G Whitley. 1992. Natural Acid Rock Drainage at Macmillan Pass, Yukon. DIAND MEND Project No. 11. Whitehorse, Yukon.
- Large, D. 1981. The Geochemistry of the Sedimentary Rocks in the Vicinity of the Tom Pb-Zn-Ba Deposit, Yukon Territory, Canada. Journal of Geochemical Exploration, 15, 1-3, pp. 203-217.

- Mackie, R.A., Arne, D.C. and Brown, O. 2015. Enhanced interpretation of regional stream sediment geochemistry from Yukon: Catchment basin analysis and weighted sums modelling. Yukon Geological Survey Open File 2015-10.
- Magnall, J.M., Gleeson, S.A., and Paradis, S. 2020. A new subseafloor replacement model for the Macmillan Pass clastic-dominant Zn-Pb+/-Ba Deposits (Yukon, Canada). Economic Geology, 115, 5, pp. 943-959.
- McClay, K.R., and Bidwell, G.E. 1986. Geology of the Tom Deposit, Macmillan Pass Yukon. Mineral Deposits of Northern Corderilla, Canadian Institute of Mining and Metallurgy, Special Volume 37, pp. 100-114.
- Rennie, D.W. 2007. Technical Report on the Tom and Jason deposits, Yukon Territory, Canada: (NI 43-101) report prepared for Hudbay Minerals Inc., by Scott Wilson Roscoe Postle Associates Inc. May, 24, 2007.
- Sangster, D.F. 2002. The role of dense brines in the formation of vent-distal sedimentaryexhalative (SEDEX) lead-zinc deposits: field and laboratory evidence. Mineralium Deposita, pp. 149-157.
- Smith, C.A.S., Meikle, J.C., and Roots, C.F. 2004. Ecoregions of the Yukon Territory: biophysical properties of Yukon landscapes. Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01, Summerland, British Columbia. 313 p.
- Stanley, C.R., and Lawie, D. 2007. Average relative error in geochemical determinations: Clarification, calculation, and a plea for consistency. Exploration and Mining Geology, 16, 3-4, pp. 267-275.
- Steinert Magnetic + Sensor Sorting Solutions. 2021. 01210360 Testwork on KSS XT L, mass balance report, prepared for Fireweed Zinc, May 31 to June 7, 2021.
- Turner, D. 2018. Surficial Geology and Glacial History of the Macmillan Pass Area. Report prepared for Fireweed Zinc Corp., December 8, 2018.
- Wells, K. 2012. 2011 Summary Report Diamond Drilling and Exploration at the Tom-Jason Property, Mayo and Watson Lake Mining Districts, Yukon Territory. February, 6, 2012.
- Wilson, J. 2010. Chinook Salmon Assessment of the Ollie Lakes Drainage in the Upper Stewart River Watershed. Prepared for The Yukon River Panel Restoration & Enhancement Fund. March 2010.
- Yukon Bureau of Statistics. Population Report First Quarter. 2024. https://yukon.ca/sites/yukon.ca/files/ybs/fin-population-report-q1-2024.pdf (accessed July, 31, 2024).

28.0 Date and Signature Date

This report titled "Technical Report for NI 43-101 for the Macpass Project in Yukon, Canada" with an effective date of October 17, 2024 was prepared and signed by the following authors:

(Signed & Sealed) Pierre Landry

Dated at Victoria, BC October 17, 2024 Pierre Landry, P.Geo.

(Signed & Sealed) Chelsea Hamilton

Dated at Whitehorse, YT October 17, 2024

Chelsea Hamilton, P.Eng.

(Signed & Sealed) Kelly S. McLeod

Dated at Lake Country, BC October 17, 2024 Kelly S. McLeod, P.Eng

29.0 Certificate of Qualified Person

29.1 Pierre Landry

I, Pierre Landry, P.Geo., as an author of this report entitled "NI 43-101 Technical Report for the Macpass Project, Yukon, Canada" with an effective date of October 17, 2024 prepared for Fireweed Metals Corp., do hereby certify that:

- I am Managing Principal Resource Geologist, Valuations Lead and Team Lead Resource Geology of SLR Consulting (Canada) Ltd, of 3960 Quadra Street, Unit 303, Victoria, BC V8X 4A3.
- 2. I am a graduate of Queen's University, Kingston, Ontario, in 2006 with a Bachelor of Science (Honours) degree in Geological Science (Major) and Economics (Minor).
- I am registered as a Professional Geologist in the Province of British Columbia (Reg.# 47339), and in the Province of Newfoundland and Labrador (Reg. # 10431). I have been working as a professional geologist for a total of 11 years. My relevant experience for the purpose of the Technical Report is:
 - Review and creation of block models as part of NI 43-101 Mineral Resource estimates, audits, and due diligence reports.
 - Mine Exploration Geologist and Grade Control Geologist at operations and mine development projects in Canada, Africa, and South America.
 - Created wireframes and block models for the NI 43-101 Mineral Resource estimate and Preliminary Economic Assessment of Zazu Metals Corporation's Lik Deposit in Alaska (Zinc-Lead-Silver). This report, dated April 23, 2014, with an effective date of March 3, 2014, was completed under the supervision of Neil Gow, P.Geo., at Roscoe Postle Associates, Inc., where I was also employed at the time.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5. I visited the Macpass Project on September 15-17, 2022.
- 6. I am responsible for overall preparation and all sections exclusive of 13 and 14.6, and related subsections in 1, 25, and 26 of the Technical Report.
- 7. I am independent of the Issuer applying the test set out in Section 1.5 of NI 43-101.
- 8. I have had no prior involvement with the property that is the subject of the Technical Report.
- 9. I have read NI 43-101, and the Technical Report has been prepared in compliance with NI 43-101 and Form 43-101F1.
- 10. At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 17th day of October, 2024

(Signed) Pierre Landry

Pierre Landry, P.Geo.

29.2 Chelsea Hamilton

I, Chelsea Hamilton, P.Eng., as an author of this report entitled "NI 43-101 Technical Report for the Macpass Project, Yukon, Canada" with an effective date of October 17, 2024 prepared for Fireweed Metals Corp., do hereby certify that:

I am a Senior Mining Engineer with SLR Consulting (Canada) Ltd, of 6131 6th Avenue, Whitehorse, YT Y1A 1N2.

- 1. I am a graduate of the University of Toronto, Ontario in 2007 with a Bachelor of Applied Science degree in Mineral Engineering.
- I am registered as a Professional Engineer in the Province of Ontario (Licence No. 100127897), the Yukon Territory (License No. 3578) and Nunavut and Northwest Territories (NAPEG, License No. L4793). I have worked as a mining engineer for a total of 10 years since my graduation. My relevant experience for the purpose of the Technical Report is:
 - Mine planning, underground mine design and scheduling, and ventilation design and implementation for numerous projects in Canada and USA.
 - Mining engineer for an underground gold mine in Ontario, Canada and an underground gold mine in Nevada, USA for a total of 3.5 years.
 - Precious Metals Equity Research Associate/Analyst in Toronto for a total of 2.5 years.
 - Mineral reserve estimation and preparation of NI 43-101 Technical Reports.
 - Experienced user of Deswik mine planning software.
- I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 4. I did not visit the Macpass Project.
- 5. I am responsible for Section 14.6 and related content in subsections 1.1.1.1, 1.1.2.1, 1.2.7, 25.1, and 26.1 of the Technical Report.
- 6. I am independent of the Issuer applying the test set out in Section 1.5 of NI 43-101.
- 7. I have had no prior involvement with the property that is the subject of the Technical Report.
- 8. I have read NI 43-101, and the Technical Report has been prepared in compliance with NI 43-101 and Form 43-101F1.
- At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the Section Nos. in the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 17th day of October, 2024

(Signed) Chelsea Hamilton

Chelsea Hamilton, P.Eng.

29.3 Kelly McLeod

I, Kelly S. McLeod, P.Eng., as an author of this report entitled "Technical Report on the Macpass Project, Yukon, Canada", with an effective date of October 17, 2024 prepared for Fireweed Metals Corp., do hereby certify that:

- 1. I am currently employed as President with K-Met Consultants Inc., with an office at 14650 Oyama Road, Lake Country, B.C., V4V 2C7.
- 2. I am a graduate of McMaster University in 1984 with a Bachelor of Engineering Metallurgy.

I am registered as a Professional Engineer in the Yukon Territory, permit number 2673. I have worked as a metallurgical engineer for over 20 years since my graduation. My relevant experience for the purpose of the Technical Report is Metallurgy and I have recently worked on the following projects: MacMillan Pass Project PEA, Mactung Project, Madsen Gold Project Feasibility Study, Independent Technical Report for PureGold Mine, Premier Gold Project, Macassa Mill Expansion EPCM Project, Valentine Gold Project, Springpole Feasibility Study, Curraghinalt Gold Project, and Spanish Mountain Project.

- I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 4. I have not visited the Macpass Project site.
- 5. I am responsible for Section 13 and subsections 1.1.1.2, 1.1.2.2, 1.2.8, 25.2, and 26.2 of this Technical Report.
- 6. I am independent of the Issuer and related companies applying all the test set out in Section 1.5 of NI 43-101.
- 7. I have not had any involvement with the property that is the subject of the Technical Report.
- 8. I have read NI 43-101, and the Technical Report has been prepared in compliance with NI 43-101 and Form 43-101F1.
- 9. At the effective date of the Technical Report, to the best of my knowledge, information, and belief, the Technical Report contains Section 13 in the Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated 17th day of October, 2024

(Signed) Kelly S. McLeod

Kelly S. McLeod, P.Eng.

30.0 Appendix 1 - Macpass Project Claims and Leases

Contiguous Macpass Claims		Contiguou	s Macpass C	laims	Contiguou	Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Dat	
YA07470	Ace 1	2042-12-03	YA11538	ACE 35	2038-12-31	YE43630	BR 30	2036-12-03	
YA07471	Ace 2	2041-12-03	YA07492	Ace 36	2042-12-03	YE43631	BR 31	2036-12-03	
YA07472	Ace 3	2041-12-03	YA07493	Ace 37	2042-12-03	YE43632	BR 32	2036-12-03	
YA07473	Ace 4	2042-12-03	YA07494	Ace 38	2042-12-03	YE43633	BR 33	2036-12-03	
YA07474	Ace 5	2042-12-03	YA11539	ACE 39	2038-12-31	YE43634	BR 34	2036-12-03	
YA07475	Ace 6	2042-12-03	YE43601	BR 1	2036-12-03	YE43635	BR 35	2036-12-03	
YA07476	Ace 7	2041-12-03	YE43602	BR 2	2036-12-03	YE43636	BR 36	2036-12-03	
YA07477	Ace 8	2041-12-03	YE43603	BR 3	2036-12-03	YE43637	BR 37	2036-12-03	
YA07478	Ace 9	2042-12-03	YE43604	BR 4	2036-12-03	YE43638	BR 38	2036-12-03	
YA07479	Ace 10	2042-12-03	YE43605	BR 5	2036-12-03	YE43640	BR 40	2036-12-03	
YA07480	Ace 11	2042-12-03	YE43606	BR 6	2036-12-03	YE43641	BR 41	2036-12-03	
YA07481	Ace 12	2042-12-03	YE43607	BR 7	2036-12-03	YE43642	BR 42	2036-12-03	
YA07482	Ace 13	2042-12-03	YE43608	BR 8	2036-12-03	YE43643	BR 43	2036-12-03	
YA07483	Ace 14	2042-12-03	YE43609	BR 9	2036-12-03	YE43644	BR 44	2036-12-03	
YA07484	Ace 15	2042-12-03	YE43610	BR 10	2036-12-03	YE43645	BR 45	2036-12-03	
YA07485	Ace 16	2042-12-03	YE43611	BR 11	2036-12-03	YE43646	BR 46	2036-12-03	
YA07486	Ace 17	2042-12-03	YE43612	BR 12	2036-12-03	YE43647	BR 47	2036-12-03	
YA11526	ACE 18	2038-12-31	YE43613	BR 13	2036-12-03	YE43648	BR 48	2036-12-03	
YA11527	ACE 19	2038-12-31	YE43614	BR 14	2036-12-03	YE43649	BR 49	2036-12-03	
YA11528	ACE 20	2038-12-31	YE43615	BR 15	2036-12-03	YE43650	BR 50	2036-12-03	
YA11529	ACE 21	2038-12-31	YE43616	BR 16	2036-12-03	YE43651	BR 51	2036-12-03	
YA07487	Ace 22	2042-12-03	YE43617	BR 17	2036-12-03	YE43652	BR 52	2036-12-03	
YA07488	Ace 23	2041-12-03	YE43618	BR 18	2036-12-03	YE43653	BR 53	2036-12-03	
YA07489	Ace 24	2041-12-03	YE43619	BR 19	2036-12-03	YE43654	BR 54	2036-12-03	
YA11530	ACE 25	2038-12-31	YE43620	BR 20	2036-12-03	YE43655	BR 55	2036-12-03	
YA11531	ACE 26	2038-12-31	YE43621	BR 21	2036-12-03	YE43656	BR 56	2036-12-03	
YA11532	ACE 27	2038-12-31	YE43622	BR 22	2036-12-03	YE43657	BR 57	2036-12-03	
YA11533	ACE 28	2038-12-31	YE43623	BR 23	2036-12-03	YE43658	BR 58	2036-12-03	
YA11534	ACE 29	2038-12-31	YE43624	BR 24	2036-12-03	YE43659	BR 59	2036-12-03	
YA11535	ACE 30	2038-12-31	YE43625	BR 25	2036-12-03	YE43660	BR 60	2036-12-03	
YA07490	Ace 31	2042-12-03	YE43626	BR 26	2036-12-03	YE43661	BR 61	2036-12-03	
YA07491	Ace 32	2042-12-03	YE43627	BR 27	2036-12-03	YE43662	BR 62	2036-12-03	
YA11536	ACE 33	2038-12-31	YE43628	BR 28	2036-12-03	YE43663	BR 63	2036-12-03	
YA11537	ACE 34	2038-12-31	YE43629	BR 29	2036-12-03	YE43664	BR 64	2036-12-03	

Contiguou	tiguous Macpass Claims			s Macpass C	laims	Contiguou	Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date		
YE43665	BR 65	2036-12-03	YE43703	BR 103	2036-12-03	YE43741	BR 141	2036-12-03		
YE43666	BR 66	2036-12-03	YE43704	BR 104	2036-12-03	YE43742	BR 142	2036-12-03		
YE43667	BR 67	2036-12-03	YE43705	BR 105	2036-12-03	YE43743	BR 143	2036-12-03		
YE43668	BR 68	2036-12-03	YE43706	BR 106	2036-12-03	YE43744	BR 144	2036-12-03		
YE43669	BR 69	2036-12-03	YE43707	BR 107	2036-12-03	YE43745	BR 145	2036-12-03		
YE43670	BR 70	2036-12-03	YE43708	BR 108	2036-12-03	YE43746	BR 146	2036-12-03		
YE43671	BR 71	2036-12-03	YE43709	BR 109	2036-12-03	YE43747	BR 147	2036-12-03		
YE43672	BR 72	2036-12-03	YE43710	BR 110	2036-12-03	YE43748	BR 148	2036-12-03		
YE43673	BR 73	2036-12-03	YE43711	BR 111	2036-12-03	YE43749	BR 149	2036-12-03		
YE43674	BR 74	2036-12-03	YE43712	BR 112	2036-12-03	YE43750	BR 150	2036-12-03		
YE43675	BR 75	2036-12-03	YE43713	BR 113	2036-12-03	YE43751	BR 151	2036-12-03		
YE43676	BR 76	2036-12-03	YE43714	BR 114	2036-12-03	YE43752	BR 152	2036-12-03		
YE43677	BR 77	2036-12-03	YE43715	BR 115	2036-12-03	YE43753	BR 153	2036-12-03		
YE43678	BR 78	2036-12-03	YE43716	BR 116	2036-12-03	YE43754	BR 154	2036-12-03		
YE43679	BR 79	2036-12-03	YE43717	BR 117	2036-12-03	YE43755	BR 155	2036-12-03		
YE43680	BR 80	2036-12-03	YE43718	BR 118	2036-12-03	YE43756	BR 156	2036-12-03		
YE43681	BR 81	2036-12-03	YE43719	BR 119	2036-12-03	YE43757	BR 157	2036-12-03		
YE43682	BR 82	2036-12-03	YE43720	BR 120	2036-12-03	YE43758	BR 158	2036-12-03		
YE43683	BR 83	2036-12-03	YE43721	BR 121	2036-12-03	YE43759	BR 159	2036-12-03		
YE43684	BR 84	2036-12-03	YE43722	BR 122	2036-12-03	YE43760	BR 160	2036-12-03		
YE43685	BR 85	2036-12-03	YE43723	BR 123	2036-12-03	YE43761	BR 161	2036-12-03		
YE43686	BR 86	2036-12-03	YE43724	BR 124	2036-12-03	YE43762	BR 162	2036-12-03		
YE43687	BR 87	2036-12-03	YE43725	BR 125	2036-12-03	YE43763	BR 163	2036-12-03		
YE43688	BR 88	2036-12-03	YE43726	BR 126	2036-12-03	YE43764	BR 164	2036-12-03		
YE43689	BR 89	2036-12-03	YE43727	BR 127	2036-12-03	YE43765	BR 165	2036-12-03		
YE43690	BR 90	2036-12-03	YE43728	BR 128	2036-12-03	YE43766	BR 166	2036-12-03		
YE43691	BR 91	2036-12-03	YE43729	BR 129	2036-12-03	YE43767	BR 167	2036-12-03		
YE43692	BR 92	2036-12-03	YE43730	BR 130	2036-12-03	YE43768	BR 168	2036-12-03		
YE43693	BR 93	2036-12-03	YE43731	BR 131	2036-12-03	YE43769	BR 169	2036-12-03		
YE43694	BR 94	2036-12-03	YE43732	BR 132	2036-12-03	YE43770	BR 170	2036-12-03		
YE43695	BR 95	2036-12-03	YE43733	BR 133	2036-12-03	YE43771	BR 171	2036-12-03		
YE43696	BR 96	2036-12-03	YE43734	BR 134	2036-12-03	YE43772	BR 172	2036-12-03		
YE43697	BR 97	2036-12-03	YE43735	BR 135	2036-12-03	YE43773	BR 173	2036-12-03		
YE43698	BR 98	2036-12-03	YE43736	BR 136	2036-12-03	YE43774	BR 174	2036-12-03		
YE43699	BR 99	2036-12-03	YE43737	BR 137	2036-12-03	YE43775	BR 175	2036-12-03		
YE43700	BR 100	2036-12-03	YE43738	BR 138	2036-12-03	YE43776	BR 176	2036-12-03		
YE43701	BR 101	2036-12-03	YE43739	BR 139	2036-12-03	YE43777	BR 177	2036-12-03		
YE43702	BR 102	2036-12-03	YE43740	BR 140	2036-12-03	YE43778	BR 178	2036-12-03		

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	Claims	Contiguous Macpass Claims		laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YE43779	BR 179	2036-12-03	YE43823	BR 223	2036-12-03	YE43861	BR 261	2036-12-03
YE43780	BR 180	2036-12-03	YE43824	BR 224	2036-12-03	YE43862	BR 262	2036-12-03
YE43781	BR 181	2036-12-03	YE43825	BR 225	2036-12-03	YE43863	BR 263	2036-12-03
YE43782	BR 182	2036-12-03	YE43826	BR 226	2036-12-03	YE43864	BR 264	2036-12-03
YE43783	BR 183	2036-12-03	YE43827	BR 227	2036-12-03	YE43865	BR 265	2036-12-03
YE43784	BR 184	2036-12-03	YE43828	BR 228	2036-12-03	YE43866	BR 266	2036-12-03
YE43785	BR 185	2036-12-03	YE43829	BR 229	2036-12-03	YE43867	BR 267	2036-12-03
YE43786	BR 186	2036-12-03	YE43830	BR 230	2036-12-03	YE43868	BR 268	2036-12-03
YE43787	BR 187	2036-12-03	YE43831	BR 231	2036-12-03	YE43869	BR 269	2036-12-03
YE43788	BR 188	2036-12-03	YE43832	BR 232	2036-12-03	YE43870	BR 270	2036-12-03
YE43789	BR 189	2036-12-03	YE43833	BR 233	2036-12-03	YE43871	BR 271	2036-12-03
YE43790	BR 190	2036-12-03	YE43834	BR 234	2036-12-03	YE43872	BR 272	2036-12-03
YE43791	BR 191	2036-12-03	YE43835	BR 235	2036-12-03	YE43873	BR 273	2036-12-03
YE43793	BR 193	2036-12-03	YE43836	BR 236	2036-12-03	YE43874	BR 274	2036-12-03
YE43795	BR 195	2036-12-03	YE43837	BR 237	2036-12-03	YE43875	BR 275	2036-12-03
YE43797	BR 197	2036-12-03	YE43838	BR 238	2036-12-03	YE43876	BR 276	2036-12-03
YE43799	BR 199	2036-12-03	YE43839	BR 239	2036-12-03	YE43877	BR 277	2036-12-03
YE43801	BR 201	2036-12-03	YE43840	BR 240	2036-12-03	YE43878	BR 278	2036-12-03
YE43803	BR 203	2036-12-03	YE43841	BR 241	2036-12-03	YE43879	BR 279	2036-12-03
YE43804	BR 204	2036-12-03	YE43842	BR 242	2036-12-03	YE43880	BR 280	2036-12-03
YE43805	BR 205	2036-12-03	YE43843	BR 243	2036-12-03	YE43881	BR 281	2036-12-03
YE43806	BR 206	2036-12-03	YE43844	BR 244	2036-12-03	YE43882	BR 282	2036-12-03
YE43807	BR 207	2036-12-03	YE43845	BR 245	2036-12-03	YE43883	BR 283	2036-12-03
YE43808	BR 208	2036-12-03	YE43846	BR 246	2036-12-03	YE43884	BR 284	2036-12-03
YE43809	BR 209	2036-12-03	YE43847	BR 247	2036-12-03	YE43885	BR 285	2036-12-03
YE43810	BR 210	2036-12-03	YE43848	BR 248	2036-12-03	YE43886	BR 286	2036-12-03
YE43811	BR 211	2036-12-03	YE43849	BR 249	2036-12-03	YE43887	BR 287	2036-12-03
YE43812	BR 212	2036-12-03	YE43850	BR 250	2036-12-03	YE43888	BR 288	2036-12-03
YE43813	BR 213	2036-12-03	YE43851	BR 251	2036-12-03	YE43889	BR 289	2036-12-03
YE43814	BR 214	2036-12-03	YE43852	BR 252	2036-12-03	YE43890	BR 290	2036-12-03
YE43815	BR 215	2036-12-03	YE43853	BR 253	2036-12-03	YE43891	BR 291	2036-12-03
YE43816	BR 216	2036-12-03	YE43854	BR 254	2036-12-03	YE43892	BR 292	2036-12-03
YE43817	BR 217	2036-12-03	YE43855	BR 255	2036-12-03	YE43893	BR 293	2036-12-03
YE43818	BR 218	2036-12-03	YE43856	BR 256	2036-12-03	YE43894	BR 294	2036-12-03
YE43819	BR 219	2036-12-03	YE43857	BR 257	2036-12-03	YE43895	BR 295	2036-12-03
YE43820	BR 220	2036-12-03	YE43858	BR 258	2036-12-03	YE43896	BR 296	2036-12-03
YE43821	BR 221	2036-12-03	YE43859	BR 259	2036-12-03	YE43897	BR 297	2036-12-03
YE43822	BR 222	2036-12-03	YE43860	BR 260	2036-12-03	YE43898	BR 298	2036-12-03

Contiguous Macpass Claims		Contiguou	s Macpass (Claims	Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YE43899	BR 299	2036-12-03	YE43005	HS 5	2033-12-03	YE43047	HS 47	2033-12-03
YE43900	BR 300	2036-12-03	YE43006	HS 6	2033-12-03	YE43048	HS 48	2033-12-03
YE43901	BR 301	2036-12-03	YE43007	HS 7	2033-12-03	YE43049	HS 49	2033-12-03
YE43902	BR 302	2036-12-03	YE43008	HS 8	2033-12-03	YE43050	HS 50	2033-12-03
YE43903	BR 303	2036-12-03	YE43011	HS 11	2033-12-03	YE43051	HS 51	2033-12-03
YE43904	BR 304	2036-12-03	YE43012	HS 12	2033-12-03	YE43052	HS 52	2033-12-03
YE43905	BR 305	2036-12-03	YE43013	HS 13	2033-12-03	YE43053	HS 53	2033-12-03
YE43906	BR 306	2036-12-03	YE43014	HS 14	2033-12-03	YE43054	HS 54	2033-12-03
YE43907	BR 307	2036-12-03	YE43015	HS 15	2033-12-03	YE43055	HS 55	2033-12-03
YE43908	BR 308	2036-12-03	YE43016	HS 16	2033-12-03	YE43056	HS 56	2033-12-03
YE43909	BR 309	2036-12-03	YE43017	HS 17	2033-12-03	YE43057	HS 57	2033-12-03
YE43910	BR 310	2036-12-03	YE43018	HS 18	2033-12-03	YE43058	HS 58	2033-12-03
YE43911	BR 311	2036-12-03	YE43019	HS 19	2033-12-03	YE43059	HS 59	2033-12-03
YE43912	BR 312	2036-12-03	YE43020	HS 20	2033-12-03	YE43060	HS 60	2033-12-03
YE43917	BR 317	2036-12-03	YE43021	HS 21	2033-12-03	YE43061	HS 61	2033-12-03
YE43918	BR 318	2036-12-03	YE43022	HS 22	2033-12-03	YE43062	HS 62	2033-12-03
YE43923	BR 323	2036-12-03	YE43023	HS 23	2033-12-03	YE43063	HS 63	2033-12-03
YE43924	BR 324	2036-12-03	YE43024	HS 24	2033-12-03	YE43064	HS 64	2033-12-03
YE43925	BR 325	2036-12-03	YE43027	HS 27	2033-12-03	YE43065	HS 65	2033-12-03
YE43926	BR 326	2036-12-03	YE43028	HS 28	2033-12-03	YE43066	HS 66	2033-12-03
YE43927	BR 327	2036-12-03	YE43029	HS 29	2033-12-03	YE43067	HS 67	2033-12-03
YE43928	BR 328	2036-12-03	YE43030	HS 30	2033-12-03	YE43068	HS 68	2033-12-03
YE43929	BR 329	2036-12-03	YE43031	HS 31	2033-12-03	YE43069	HS 69	2033-12-03
YE43930	BR 330	2036-12-03	YE43032	HS 32	2033-12-03	YE43070	HS 70	2033-12-03
YE43931	BR 331	2036-12-03	YE43033	HS 33	2033-12-03	YE43071	HS 71	2033-12-03
YE43932	BR 332	2036-12-03	YE43034	HS 34	2033-12-03	YE43072	HS 72	2033-12-03
YE43933	BR 333	2036-12-03	YE43035	HS 35	2033-12-03	YE43073	HS 73	2033-12-03
YE43934	BR 334	2036-12-03	YE43036	HS 36	2033-12-03	YE43074	HS 74	2033-12-03
YE43939	BR 339	2036-12-03	YE43037	HS 37	2033-12-03	YE43075	HS 75	2033-12-03
YE43940	BR 340	2036-12-03	YE43038	HS 38	2033-12-03	YE43076	HS 76	2033-12-03
YE43945	BR 345	2036-12-03	YE43039	HS 39	2033-12-03	YE43077	HS 77	2033-12-03
YE43946	BR 346	2036-12-03	YE43040	HS 40	2033-12-03	YE43078	HS 78	2033-12-03
YE43947	BR 347	2036-12-03	YE43041	HS 41	2033-12-03	YE43079	HS 79	2033-12-03
YE43948	BR 348	2036-12-03	YE43042	HS 42	2033-12-03	YE43080	HS 80	2033-12-03
YE43001	HS 1	2033-12-03	YE43043	HS 43	2033-12-03	YE43081	HS 81	2033-12-03
YE43002	HS 2	2033-12-03	YE43044	HS 44	2033-12-03	YE43082	HS 82	2033-12-03
YE43003	HS 3	2033-12-03	YE43045	HS 45	2033-12-03	YE43083	HS 83	2033-12-03
YE43004	HS 4	2033-12-03	YE43046	HS 46	2033-12-03	YE43084	HS 84	2033-12-03

Contiguous Macpass Claims			Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant Claim Expiry Date			Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE43085	HS 85	2033-12-03	YE43123	HS 123	2033-12-03	YE43163	HS 163	2033-12-03	
YE43086	HS 86	2033-12-03	YE43124	HS 124	2033-12-03	YE43164	HS 164	2033-12-03	
YE43087	HS 87	2033-12-03	YE43125	HS 125	2033-12-03	YE43165	HS 165	2033-12-03	
YE43088	HS 88	2033-12-03	YE43127	HS 127	2033-12-03	YE43166	HS 166	2033-12-03	
YE43089	HS 89	2033-12-03	YE43129	HS 129	2033-12-03	YE43167	HS 167	2033-12-03	
YE43090	HS 90	2033-12-03	YE43130	HS 130	2033-12-03	YE43168	HS 168	2033-12-03	
YE43091	HS 91	2033-12-03	YE43131	HS 131	2033-12-03	YE43169	HS 169	2033-12-03	
YE43092	HS 92	2033-12-03	YE43132	HS 132	2033-12-03	YE43170	HS 170	2033-12-03	
YE43093	HS 93	2033-12-03	YE43133	HS 133	2033-12-03	YE43171	HS 171	2033-12-03	
YE43094	HS 94	2033-12-03	YE43134	HS 134	2033-12-03	YE43172	HS 172	2033-12-03	
YE43095	HS 95	2033-12-03	YE43135	HS 135	2033-12-03	YE43173	HS 173	2033-12-03	
YE43096	HS 96	2033-12-03	YE43136	HS 136	2033-12-03	YE43174	HS 174	2033-12-03	
YE43097	HS 97	2033-12-03	YE43137	HS 137	2033-12-03	YE43175	HS 175	2033-12-03	
YE43098	HS 98	2033-12-03	YE43138	HS 138	2033-12-03	YE43176	HS 176	2033-12-03	
YE43099	HS 99	2033-12-03	YE43139	HS 139	2033-12-03	YE43177	HS 177	2033-12-03	
YE43100	HS 100	2033-12-03	YE43140	HS 140	2033-12-03	YE43178	HS 178	2033-12-03	
YE43101	HS 101	2033-12-03	YE43141	HS 141	2033-12-03	YE43179	HS 179	2033-12-03	
YE43102	HS 102	2033-12-03	YE43142	HS 142	2033-12-03	YE43180	HS 180	2033-12-03	
YE43103	HS 103	2033-12-03	YE43143	HS 143	2033-12-03	YE43181	HS 181	2033-12-03	
YE43104	HS 104	2033-12-03	YE43144	HS 144	2033-12-03	YE43182	HS 182	2033-12-03	
YE43105	HS 105	2033-12-03	YE43145	HS 145	2033-12-03	YE43183	HS 183	2033-12-03	
YE43106	HS 106	2033-12-03	YE43146	HS 146	2033-12-03	YE43184	HS 184	2033-12-03	
YE43107	HS 107	2033-12-03	YE43147	HS 147	2033-12-03	YE43185	HS 185	2033-12-03	
YE43108	HS 108	2033-12-03	YE43148	HS 148	2033-12-03	YE43186	HS 186	2033-12-03	
YE43109	HS 109	2033-12-03	YE43149	HS 149	2033-12-03	YE43187	HS 187	2033-12-03	
YE43110	HS 110	2033-12-03	YE43150	HS 150	2033-12-03	YE43188	HS 188	2033-12-03	
YE43111	HS 111	2033-12-03	YE43151	HS 151	2033-12-03	YE43189	HS 189	2033-12-03	
YE43112	HS 112	2033-12-03	YE43152	HS 152	2033-12-03	YE43190	HS 190	2033-12-03	
YE43113	HS 113	2033-12-03	YE43153	HS 153	2033-12-03	YE43191	HS 191	2033-12-03	
YE43114	HS 114	2033-12-03	YE43154	HS 154	2033-12-03	YE43192	HS 192	2033-12-03	
YE43115	HS 115	2033-12-03	YE43155	HS 155	2033-12-03	YE43193	HS 193	2033-12-03	
YE43116	HS 116	2033-12-03	YE43156	HS 156	2033-12-03	YE43194	HS 194	2033-12-03	
YE43117	HS 117	2033-12-03	YE43157	HS 157	2033-12-03	YE43195	HS 195	2033-12-03	
YE43118	HS 118	2033-12-03	YE43158	HS 158	2033-12-03	YE43196	HS 196	2033-12-03	
YE43119	HS 119	2033-12-03	YE43159	HS 159	2033-12-03	YE43197	HS 197	2033-12-03	
YE43120	HS 120	2033-12-03	YE43160	HS 160	2033-12-03	YE43198	HS 198	2033-12-03	
YE43121	HS 121	2033-12-03	YE43161	HS 161	2033-12-03	YE43199	HS 199	2033-12-03	
YE43122	HS 122	2033-12-03	YE43162	HS 162	2033-12-03	YE43200	HS 200	2033-12-03	

Contiguous Macpass Claims			Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant	Grant Claim Expiry Date			Claim	Expiry Date	Grant	Claim	Expiry Date	
YE43201	HS 201	2033-12-03	YE43239	HS 239	2033-12-03	Y 96214	Jason 23	2041-12-03	
YE43202	HS 202	2033-12-03	YE43240	HS 240	2033-12-03	Y 96215	Jason 24	2041-12-03	
YE43203	HS 203	2033-12-03	YE43241	HS 241	2033-12-03	Y 96216	Jason 25	2041-12-03	
YE43204	HS 204	2033-12-03	YE43242	HS 242	2033-12-03	Y 96217	Jason 26	2041-12-03	
YE43205	HS 205	2033-12-03	YE39287	HS 243	2033-12-03	Y 96218	Jason 27	2041-12-03	
YE43206	HS 206	2033-12-03	YE39288	HS 244	2033-12-03	Y 96219	Jason 28	2041-12-03	
YE43207	HS 207	2033-12-03	YE39289	HS 245	2033-12-03	Y 96220	Jason 29	2041-12-03	
YE43208	HS 208	2033-12-03	YE39290	HS 246	2033-12-03	Y 96221	Jason 30	2041-12-03	
YE43209	HS 209	2033-12-03	YE39291	HS 247	2033-12-03	Y 96222	JASON 31	2038-12-31	
YE43210	HS 210	2033-12-03	YE39292	HS 248	2033-12-03	Y 96223	JASON 32	2038-12-31	
YE43211	HS 211	2033-12-03	YE39293	HS 249	2033-12-03	Y 83274	JASON 33	2038-12-31	
YE43212	HS 212	2033-12-03	YE39294	HS 250	2033-12-03	Y 83275	JASON 34	2038-12-31	
YE43213	HS 213	2033-12-03	YE39281	HS 251	2033-12-03	Y 96224	Jason 35	2041-12-03	
YE43214	HS 214	2033-12-03	YE39282	HS 252	2033-12-03	Y 96225	Jason 36	2041-12-03	
YE43215	HS 215	2033-12-03	YE39283	HS 253	2033-12-03	Y 96226	Jason 37	2041-12-03	
YE43216	HS 216	2033-12-03	YE39284	HS 254	2033-12-03	Y 96227	Jason 38	2041-12-03	
YE43217	HS 217	2033-12-03	YE39285	HS 255	2033-12-03	Y 96228	JASON 39	2038-12-31	
YE43218	HS 218	2033-12-03	YE39286	HS 256	2033-12-03	Y 96229	JASON 40	2038-12-31	
YE43219	HS 219	2033-12-03	Y 96192	Jason 1	2041-12-03	Y 83276	JASON 41	2038-12-31	
YE43220	HS 220	2033-12-03	Y 96193	Jason 2	2041-12-03	Y 83277	JASON 42	2038-12-31	
YE43221	HS 221	2033-12-03	Y 96194	Jason 3	2041-12-03	Y 83278	JASON 43	2038-12-31	
YE43222	HS 222	2033-12-03	Y 96195	Jason 4	2041-12-03	Y 83279	JASON 44	2038-12-31	
YE43223	HS 223	2033-12-03	Y 96198	Jason 7	2042-12-03	Y 97986	Jason 45	2041-12-03	
YE43224	HS 224	2033-12-03	Y 96199	Jason 8	2042-12-03	Y 97987	Jason 46	2041-12-03	
YE43225	HS 225	2033-12-03	Y 96200	Jason 9	2041-12-03	Y 97988	Jason 47	2041-12-03	
YE43226	HS 226	2033-12-03	Y 96201	Jason 10	2041-12-03	Y 97989	Jason 48	2041-12-03	
YE43227	HS 227	2033-12-03	Y 96202	Jason 11	2041-12-03	Y 98244	Jason 49	2042-12-03	
YE43228	HS 228	2033-12-03	Y 96203	Jason 12	2041-12-03	Y 98245	Jason 50	2042-12-03	
YE43229	HS 229	2033-12-03	Y 96204	Jason 13	2041-12-03	Y 98246	Jason 51	2042-12-03	
YE43230	HS 230	2033-12-03	Y 96205	Jason 14	2041-12-03	Y 98247	Jason 52	2042-12-03	
YE43231	HS 231	2033-12-03	Y 96206	Jason 15	2041-12-03	Y 98248	Jason 53	2042-12-03	
YE43232	HS 232	2033-12-03	Y 96207	Jason 16	2041-12-03	Y 98249	Jason 54	2042-12-03	
YE43233	HS 233	2033-12-03	Y 96208	Jason 17	2041-12-03	Y 98250	Jason 55	2041-12-03	
YE43234	HS 234	2033-12-03	Y 96209	Jason 18	2041-12-03	Y 98251	Jason 56	2041-12-03	
YE43235	HS 235	2033-12-03	Y 96210	JASON 19	2038-12-31	Y 98252	Jason 57	2042-12-03	
YE43236	HS 236	2033-12-03	Y 96211	JASON 20	2038-12-31	Y 98253	Jason 58	2042-12-03	
YE43237	HS 237	2033-12-03	Y 96212	Jason 21	2041-12-03	Y 98254	Jason 59	2042-12-03	
YE43238	HS 238	2033-12-03	Y 96213	Jason 22	2041-12-03	Y 98255	Jason 60	2042-12-03	

Contiguous Macpass Claims			Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant Claim Expiry Date			Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
Y 98256	Jason 61	2042-12-03	Y 98285	Jason 100	2042-12-03	Y 98313	Jason 142	2042-12-03	
Y 98257	Jason 62	2042-12-03	Y 98286	Jason 101	2042-12-03	Y 98314	Jason 143	2042-12-03	
Y 98258	Jason 63	2042-12-03	Y 98287	Jason 102	2042-12-03	Y 98315	Jason 144	2042-12-03	
Y 98259	Jason 64	2042-12-03	Y 98288	Jason 103	2042-12-03	Y 98316	Jason 145	2042-12-03	
Y 98260	Jason 65	2042-12-03	Y 98289	Jason 104	2042-12-03	Y 98317	Jason 146	2042-12-03	
Y 98261	Jason 66	2042-12-03	Y 98290	Jason 105	2042-12-03	Y 98318	Jason 147	2042-12-03	
Y 98262	Jason 67	2042-12-03	Y 98291	Jason 106	2042-12-03	Y 98319	Jason 148	2042-12-03	
Y 98263	Jason 68	2042-12-03	Y 98292	Jason 107	2042-12-03	Y 98320	Jason 149	2042-12-03	
Y 98264	Jason 69	2042-12-03	Y 98293	Jason 108	2042-12-03	Y 98321	Jason 150	2042-12-03	
Y 98265	Jason 70	2042-12-03	Y 98294	Jason 109	2042-12-03	Y 98322	Jason 151	2042-12-03	
Y 98266	Jason 71	2042-12-03	Y 98295	Jason 110	2042-12-03	Y 98323	Jason 152	2042-12-03	
Y 98267	Jason 72	2042-12-03	Y 98296	Jason 111	2041-12-03	Y 98324	Jason 153	2042-12-03	
Y 98268	Jason 73	2042-12-03	Y 98297	Jason 112	2041-12-03	Y 98325	Jason 154	2042-12-03	
Y 98269	Jason 74	2042-12-03	Y 98298	Jason 113	2041-12-03	Y 98326	Jason 155	2042-12-03	
Y 98270	Jason 75	2042-12-03	Y 98299	Jason 114	2041-12-03	Y 98327	Jason 156	2042-12-03	
Y 98271	Jason 76	2042-12-03	Y 84515	JASON 115	2038-12-31	Y 98328	Jason 157	2042-12-03	
Y 98272	Jason 77	2041-12-03	Y 84516	JASON 116	2038-12-31	Y 98329	Jason 158	2042-12-03	
Y 98273	Jason 78	2041-12-03	Y 98300	Jason 117	2042-12-03	Y 98330	Jason 159	2042-12-03	
Y 98274	Jason 79	2041-12-03	Y 98301	Jason 118	2042-12-03	Y 98331	Jason 160	2042-12-03	
Y 98275	Jason 80	2041-12-03	Y 98302	Jason 119	2041-12-03	Y 93952	JASON 161	2038-12-31	
Y 98276	Jason 81	2041-12-03	Y 98303	Jason 120	2041-12-03	Y 93953	JASON 162	2038-12-31	
Y 98277	Jason 82	2041-12-03	Y 98304	Jason 121	2041-12-03	Y 93954	JASON 163	2038-12-31	
Y 84530	JASON 84	2038-12-31	Y 98305	Jason 122	2041-12-03	Y 93955	JASON 164	2038-12-31	
Y 84507	JASON 85	2038-12-31	Y 84517	JASON 123	2038-12-31	Y 93956	JASON 165	2038-12-31	
Y 84508	JASON 86	2038-12-31	Y 84518	JASON 124	2038-12-31	Y 93957	JASON 166	2038-12-31	
Y 84509	JASON 87	2038-12-31	Y 98306	Jason 125	2042-12-03	Y 93958	JASON 167	2038-12-31	
Y 84510	JASON 88	2038-12-31	Y 98307	Jason 126	2042-12-03	Y 93959	JASON 168	2038-12-31	
Y 84511	JASON 89	2038-12-31	Y 98308	Jason 127	2042-12-03	Y 93960	JASON 169	2038-12-31	
Y 84512	JASON 90	2038-12-31	Y 98309	Jason 128	2042-12-03	Y 93961	JASON 170	2038-12-31	
Y 84513	JASON 91	2038-12-31	Y 98310	Jason 129	2042-12-03	Y 93962	JASON 171	2038-12-31	
Y 84514	JASON 92	2038-12-31	Y 98311	Jason 130	2042-12-03	Y 93963	JASON 172	2038-12-31	
Y 98278	Jason 93	2042-12-03	Y 84519	JASON 131	2038-12-31	Y 93964	JASON 173	2038-12-31	
Y 98279	Jason 94	2042-12-03	Y 84520	JASON 132	2038-12-31	Y 93965	JASON 174	2038-12-31	
Y 98280	Jason 95	2042-12-03	Y 84521	JASON 133	2038-12-31	Y 93966	JASON 175	2038-12-31	
Y 98281	Jason 96	2042-12-03	Y 84522	JASON 134	2038-12-31	Y 93967	JASON 176	2038-12-31	
Y 98282	Jason 97	2042-12-03	Y 94471	JASON 135	2038-12-31	YA20135	JASON 177	2038-12-31	
Y 98283	Jason 98	2042-12-03	Y 84525	JASON 137	2038-12-31	YA20136	JASON 178	2038-12-31	
Y 98284	Jason 99	2042-12-03	Y 98312	Jason 141	2042-12-03	YA20137	JASON 179	2038-12-31	

Contiguous Macpass Claims			Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant Claim Expiry Date			Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YA20138	JASON 180	2038-12-31	YA38285	Jason 218	2042-12-03	YE36386	JERRY 16	2030-04-07	
YA20139	JASON 181	2038-12-31	YA38286	Jason 219	2042-12-03	YE36387	JERRY 17	2030-04-07	
YA20140	JASON 182	2038-12-31	YA38287	Jason 220	2042-12-03	YE36388	JERRY 18	2030-04-07	
YA20141	JASON 183	2038-12-31	YA38288	Jason 221	2042-12-03	YE36389	JERRY 19	2030-04-07	
YA20142	JASON 184	2038-12-31	YA38289	Jason 222	2042-12-03	YE36390	JERRY 20	2030-04-07	
YA20143	JASON 185	2038-12-31	YA41288	Jason 223	2042-12-03	YE36391	JERRY 21	2030-04-07	
YA20144	JASON 186	2038-12-31	YA41289	Jason 224	2042-12-03	YE36392	JERRY 22	2030-04-07	
YA20145	JASON 187	2038-12-31	YA41290	Jason 225	2042-12-03	YE36393	JERRY 23	2030-04-07	
YA20146	JASON 188	2038-12-31	YA41291	Jason 226	2042-12-03	YE36394	JERRY 24	2030-04-07	
YA15148	Jason 189	2041-12-03	YA41292	Jason 227	2042-12-03	YE36395	JERRY 25	2030-04-07	
YA15149	Jason 190	2041-12-03	YA41293	Jason 228	2042-12-03	YE36396	JERRY 26	2030-04-07	
YA15150	Jason 191	2041-12-03	YA41294	Jason 229	2042-12-03	YE36397	JERRY 27	2030-04-07	
YA35586	JASON 192	2038-12-31	YA41295	Jason 230	2042-12-03	YE36398	JERRY 28	2030-04-07	
YA35587	JASON 193	2038-12-31	YA41296	Jason 231	2042-12-03	YE36399	JERRY 29	2030-04-07	
YA35588	JASON 194	2038-12-31	YA41297	Jason 232	2042-12-03	YE36400	JERRY 30	2030-04-07	
YA35589	JASON 195	2038-12-31	YA41298	Jason 233	2042-12-03	YE36401	JERRY 31	2030-04-07	
YA35590	JASON 196	2038-12-31	YA41299	Jason 234	2042-12-03	YE36402	JERRY 32	2030-04-07	
YA35591	JASON 197	2038-12-31	YA41300	Jason 235	2042-12-03	YE36403	JERRY 33	2030-04-07	
YA38265	Jason 198	2041-12-03	YA41301	Jason 236	2042-12-03	YE36404	JERRY 34	2030-04-07	
YA38266	Jason 199	2042-12-03	YA41302	Jason 237	2042-12-03	YE36405	JERRY 35	2030-04-07	
YA38267	Jason 200	2042-12-03	YA41303	Jason 238	2042-12-03	YE36406	JERRY 36	2030-04-07	
YA38268	Jason 201	2041-12-03	YA41304	Jason 239	2042-12-03	YE36407	JERRY 37	2030-04-07	
YA38269	Jason 202	2041-12-03	YA41305	Jason 240	2042-12-03	YE36408	JERRY 38	2030-04-07	
YA38270	Jason 203	2042-12-03	YE36371	JERRY 1	2030-04-07	YE36409	JERRY 39	2030-04-07	
YA38271	Jason 204	2042-12-03	YE36372	JERRY 2	2030-04-07	YE36410	JERRY 40	2030-04-07	
YA38272	Jason 205	2042-12-03	YE36373	JERRY 3	2030-04-07	YE36411	JERRY 41	2030-04-07	
YA38273	Jason 206	2042-12-03	YE36374	JERRY 4	2030-04-07	YE36412	JERRY 42	2030-04-07	
YA38274	Jason 207	2042-12-03	YE36375	JERRY 5	2030-04-07	YE36413	JERRY 43	2030-04-07	
YA38275	Jason 208	2042-12-03	YE36376	JERRY 6	2030-04-07	YE36414	JERRY 44	2030-04-07	
YA38276	Jason 209	2042-12-03	YE36377	JERRY 7	2030-04-07	YE36415	JERRY 45	2030-04-07	
YA38277	Jason 210	2042-12-03	YE36378	JERRY 8	2030-04-07	YE36416	JERRY 46	2030-04-07	
YA38278	Jason 211	2042-12-03	YE36379	JERRY 9	2030-04-07	YE36417	JERRY 47	2030-04-07	
YA38279	Jason 212	2042-12-03	YE36380	JERRY 10	2030-04-07	YE36418	JERRY 48	2030-04-07	
YA38280	Jason 213	2042-12-03	YE36381	JERRY 11	2030-04-07	YE36419	JERRY 49	2030-04-07	
YA38281	Jason 214	2042-12-03	YE36382	JERRY 12	2030-04-07	YE36420	JERRY 50	2030-04-07	
YA38282	Jason 215	2042-12-03	YE36383	JERRY 13	2030-04-07	YE36421	JERRY 51	2030-04-07	
YA38283	Jason 216	2042-12-03	YE36384	JERRY 14	2030-04-07	YE36422	JERRY 52	2030-04-07	
YA38284	Jason 217	2042-12-03	YE36385	JERRY 15	2030-04-07	YE36423	JERRY 53	2030-04-07	

Contiguous Macpass Claims			Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant Claim Expiry Date			Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE36424	JERRY 54	2030-04-07	YE36462	JERRY 92	2030-04-07	YE36500	JERRY 130	2028-04-07	
YE36425	JERRY 55	2030-04-07	YE36463	JERRY 93	2030-04-07	YE36501	JERRY 131	2028-04-07	
YE36426	JERRY 56	2030-04-07	YE36464	JERRY 94	2030-04-07	YE36502	JERRY 132	2028-04-07	
YE36427	JERRY 57	2030-04-07	YE36465	JERRY 95	2030-04-07	YE36503	JERRY 133	2028-04-07	
YE36428	JERRY 58	2030-04-07	YE36466	JERRY 96	2030-04-07	YE36504	JERRY 134	2028-04-07	
YE36429	JERRY 59	2030-04-07	YE36467	JERRY 97	2030-04-07	YE36505	JERRY 135	2028-04-07	
YE36430	JERRY 60	2030-04-07	YE36468	JERRY 98	2030-04-07	YE36506	JERRY 136	2028-04-07	
YE36431	JERRY 61	2030-04-07	YE36469	JERRY 99	2030-04-07	YE36507	JERRY 137	2028-04-07	
YE36432	JERRY 62	2030-04-07	YE36470	JERRY 100	2030-04-07	YE36508	JERRY 138	2028-04-07	
YE36433	JERRY 63	2030-04-07	YE36471	JERRY 101	2030-04-07	YE36509	JERRY 139	2028-04-07	
YE36434	JERRY 64	2030-04-07	YE36472	JERRY 102	2030-04-07	YE36510	JERRY 140	2028-04-07	
YE36435	JERRY 65	2030-04-07	YE36473	JERRY 103	2030-04-07	YE36511	JERRY 141	2028-04-07	
YE36436	JERRY 66	2030-04-07	YE36474	JERRY 104	2030-04-07	YE36512	JERRY 142	2028-04-07	
YE36437	JERRY 67	2030-04-07	YE36475	JERRY 105	2030-04-07	YE36514	JERRY 144	2028-04-07	
YE36438	JERRY 68	2030-04-07	YE36476	JERRY 106	2030-04-07	YE36515	JERRY 145	2028-04-07	
YE36439	JERRY 69	2030-04-07	YE36477	JERRY 107	2030-04-07	YE36516	JERRY 146	2028-04-07	
YE36440	JERRY 70	2030-04-07	YE36478	JERRY 108	2030-04-07	YE36517	JERRY 147	2028-04-07	
YE36441	JERRY 71	2030-04-07	YE36479	JERRY 109	2030-04-07	YE36518	JERRY 148	2028-04-07	
YE36442	JERRY 72	2030-04-07	YE36480	JERRY 110	2030-04-07	YE36519	JERRY 149	2028-04-07	
YE36443	JERRY 73	2030-04-07	YE36481	JERRY 111	2030-04-07	YE36520	JERRY 150	2028-04-07	
YE36444	JERRY 74	2030-04-07	YE36482	JERRY 112	2030-04-07	YE36521	JERRY 151	2028-04-07	
YE36445	JERRY 75	2030-04-07	YE36483	JERRY 113	2030-04-07	YE36522	JERRY 152	2028-04-07	
YE36446	JERRY 76	2030-04-07	YE36484	JERRY 114	2030-04-07	YE36523	JERRY 153	2028-04-07	
YE36447	JERRY 77	2030-04-07	YE36485	JERRY 115	2030-04-07	YE36524	JERRY 154	2028-04-07	
YE36448	JERRY 78	2030-04-07	YE36486	JERRY 116	2030-04-07	YE36525	JERRY 155	2028-04-07	
YE36449	JERRY 79	2030-04-07	YE36487	JERRY 117	2030-04-07	YE36526	JERRY 156	2028-04-07	
YE36450	JERRY 80	2030-04-07	YE36488	JERRY 118	2030-04-07	YE36527	JERRY 157	2028-04-07	
YE36451	JERRY 81	2030-04-07	YE36489	JERRY 119	2030-04-07	YE36528	JERRY 158	2028-04-07	
YE36452	JERRY 82	2030-04-07	YE36490	JERRY 120	2030-04-07	YE36529	JERRY 159	2028-04-07	
YE36453	JERRY 83	2030-04-07	YE36491	JERRY 121	2030-04-07	YE36530	JERRY 160	2028-04-07	
YE36454	JERRY 84	2030-04-07	YE36492	JERRY 122	2030-04-07	YE36531	JERRY 161	2028-04-07	
YE36455	JERRY 85	2030-04-07	YE36493	JERRY 123	2030-04-07	YE36532	JERRY 162	2028-04-07	
YE36456	JERRY 86	2030-04-07	YE36494	JERRY 124	2030-04-07	YE36533	JERRY 163	2028-04-07	
YE36457	JERRY 87	2030-04-07	YE36495	JERRY 125	2028-04-07	YE36534	JERRY 164	2028-04-07	
YE36458	JERRY 88	2030-04-07	YE36496	JERRY 126	2028-04-07	YE36535	JERRY 165	2028-04-07	
YE36459	JERRY 89	2030-04-07	YE36497	JERRY 127	2028-04-07	YE36536	JERRY 166	2028-04-07	
YE36460	JERRY 90	2030-04-07	YE36498	JERRY 128	2028-04-07	YE36537	JERRY 167	2028-04-07	
YE36461	JERRY 91	2030-04-07	YE36499	JERRY 129	2028-04-07	YE36538	JERRY 168	2028-04-07	

Contiguou	s Macpass Cla	ims	Contiguous	Macpass Cla	ims	Contiguous	Macpass C	Claims	
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE36539	JERRY 169	2028-04-07	YE36579	JERRY 209	2028-04-07	YD151519	Mac 19	2042-12-03	
YE36540	JERRY 170	2028-04-07	YE36584	JERRY 214	2028-04-07	YD151520	Mac 20	2042-12-03	
YE36541	JERRY 171	2028-04-07	YE36585	JERRY 215	2028-04-07	YD151521	Mac 21	2042-12-03	
YE36542	JERRY 172	2028-04-07	YE36586	JERRY 216	2028-04-07	YD151522	Mac 22	2042-12-03	
YE36543	JERRY 173	2028-04-07	YE36587	JERRY 217	2028-04-07	YD151523	Mac 23	2041-12-03	
YE36544	JERRY 174	2028-04-07	YE36588	JERRY 218	2028-04-07	YD151524	Mac 24	2041-12-03	
YE36545	JERRY 175	2028-04-07	YE36589	JERRY 219	2028-04-07	YD151525	Mac 25	2041-12-03	
YE36546	JERRY 176	2028-04-07	YE36590	JERRY 220	2028-04-07	YD151526	Mac 26	2041-12-03	
YE36547	JERRY 177	2028-04-07	YE36591	JERRY 221	2028-04-07	YD151527	Mac 27	2041-12-03	
YE36548	JERRY 178	2028-04-07	YE36593	JERRY 223	2028-04-07	YD151528	Mac 28	2041-12-03	
YE36549	JERRY 179	2028-04-07	YE36594	JERRY 224	2028-04-07	YD151529	Mac 29	2041-12-03	
YE36550	JERRY 180	2028-04-07	YE36595	JERRY 225	2028-04-07	YD151530	Mac 30	2041-12-03	
YE36551	JERRY 181	2028-04-07	YA06587	Kobuk 1	2044-12-03	YD151531	Mac 31	2042-12-03	
YE36552	JERRY 182	2028-04-07	YA06588	Kobuk 2	2044-12-03	YD151532	Mac 32	2042-12-03	
YE36553	JERRY 183	2028-04-07	YA06589	Kobuk 3	2044-12-03	YD151533	Mac 33	2042-12-03	
YE36554	JERRY 184	2028-04-07	YA06590	Kobuk 4	2044-12-03	YD151534	Mac 34	2042-12-03	
YE36557	JERRY 187	2028-04-07	YA06591	Kobuk 5	2044-12-03	YD151535	Mac 35	2042-12-03	
YE36558	JERRY 188	2028-04-07	YA06592	Kobuk 6	2044-12-03	YD151536	Mac 36	2042-12-03	
YE36559	JERRY 189	2028-04-07	YA06593	Kobuk 7	2044-12-03	YD151537	Mac 37	2042-12-03	
YE36560	JERRY 190	2028-04-07	YA06594	Kobuk 8	2044-12-03	YD151538	Mac 38	2042-12-03	
YE36561	JERRY 191	2028-04-07	YD120158	Mac 1	2042-12-03	YD151539	Mac 39	2042-12-03	
YE36562	JERRY 192	2028-04-07	YD120159	Mac 2	2042-12-03	YD151540	Mac 40	2042-12-03	
YE36563	JERRY 193	2028-04-07	YD151503	Mac 3	2042-12-03	YD151541	Mac 41	2042-12-03	
YE36564	JERRY 194	2028-04-07	YD151504	Mac 4	2042-12-03	YD151542	Mac 42	2042-12-03	
YE36565	JERRY 195	2028-04-07	YD151505	Mac 5	2042-12-03	YD151543	Mac 43	2042-12-03	
YE36566	JERRY 196	2028-04-07	YD151506	Mac 6	2042-12-03	YD151544	Mac 44	2042-12-03	
YE36567	JERRY 197	2028-04-07	YD151507	Mac 7	2042-12-03	YD151545	Mac 45	2042-12-03	
/E36568	JERRY 198	2028-04-07	YD151508	Mac 8	2042-12-03	YD151546	Mac 46	2042-12-03	
/E36569	JERRY 199	2028-04-07	YD151509	Mac 9	2042-12-03	YD151547	Mac 47	2042-12-03	
YE36570	JERRY 200	2028-04-07	YD151510	Mac 10	2042-12-03	YD151548	Mac 48	2042-12-03	
/E36571	JERRY 201	2028-04-07	YD151511	Mac 11	2042-12-03	YD151549	Mac 49	2042-12-03	
/E36572	JERRY 202	2028-04-07	YD151512	Mac 12	2042-12-03	YD151550	Mac 50	2042-12-03	
/E36573	JERRY 203	2028-04-07	YD151513	Mac 13	2042-12-03	YD151551	Mac 51	2042-12-03	
YE36574	JERRY 204	2028-04-07	YD151514	Mac 14	2042-12-03	YD151552	Mac 52	2042-12-03	
YE36575	JERRY 205	2028-04-07	YD151515	Mac 15	2042-12-03	YD151553	Mac 53	2041-12-03	
YE36576	JERRY 206	2028-04-07	YD151516	Mac 16	2042-12-03	YD151554	Mac 54	2041-12-03	
YE36577	JERRY 207	2028-04-07	YD151517	Mac 17	2042-12-03	YD151555	Mac 55	2041-12-03	
YE36578	JERRY 208	2028-04-07	YD151518	Mac 18	2042-12-03	YD151556	Mac 56	2041-12-03	

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD151557	Mac 57	2041-12-03	YD151595	Mac 95	2041-12-03	YD151633	Mac 133	2041-12-03
YD151558	Mac 58	2041-12-03	YD151596	Mac 96	2041-12-03	YD151634	Mac 134	2041-12-03
YD151559	Mac 59	2041-12-03	YD151597	Mac 97	2041-12-03	YD151635	Mac 135	2041-12-03
YD151560	Mac 60	2041-12-03	YD151598	Mac 98	2041-12-03	YD151636	Mac 136	2041-12-03
YD151561	Mac 61	2041-12-03	YD151599	Mac 99	2041-12-03	YD151637	Mac 137	2041-12-03
YD151562	Mac 62	2041-12-03	YD151600	Mac 100	2041-12-03	YD151638	Mac 138	2041-12-03
YD151563	Mac 63	2041-12-03	YD151601	Mac 101	2041-12-03	YD151639	Mac 139	2041-12-03
YD151564	Mac 64	2041-12-03	YD151602	Mac 102	2041-12-03	YD151640	Mac 140	2041-12-03
YD151565	Mac 65	2041-12-03	YD151603	Mac 103	2041-12-03	YD151641	Mac 141	2041-12-03
YD151566	Mac 66	2041-12-03	YD151604	Mac 104	2041-12-03	YD151642	Mac 142	2041-12-03
YD151567	Mac 67	2041-12-03	YD151605	Mac 105	2041-12-03	YD151643	Mac 143	2041-12-03
YD151568	Mac 68	2041-12-03	YD151606	Mac 106	2041-12-03	YD151644	Mac 144	2041-12-03
YD151569	Mac 69	2041-12-03	YD151607	Mac 107	2041-12-03	YD151645	Mac 145	2041-12-03
YD151570	Mac 70	2041-12-03	YD151608	Mac 108	2041-12-03	YD151646	Mac 146	2041-12-03
YD151571	Mac 71	2041-12-03	YD151609	Mac 109	2041-12-03	YD151647	Mac 147	2041-12-03
YD151572	Mac 72	2041-12-03	YD151610	Mac 110	2041-12-03	YD151648	Mac 148	2041-12-03
YD151573	Mac 73	2041-12-03	YD151611	Mac 111	2041-12-03	YD151649	Mac 149	2041-12-03
YD151574	Mac 74	2041-12-03	YD151612	Mac 112	2041-12-03	YD151650	Mac 150	2041-12-03
YD151575	Mac 75	2041-12-03	YD151613	Mac 113	2041-12-03	YD151651	Mac 151	2041-12-03
YD151576	Mac 76	2041-12-03	YD151614	Mac 114	2041-12-03	YD151652	Mac 152	2041-12-03
YD151577	Mac 77	2041-12-03	YD151615	Mac 115	2041-12-03	YD151653	Mac 153	2041-12-03
YD151578	Mac 78	2041-12-03	YD151616	Mac 116	2041-12-03	YD151654	Mac 154	2041-12-03
YD151579	Mac 79	2041-12-03	YD151617	Mac 117	2041-12-03	YD151655	Mac 155	2041-12-03
YD151580	Mac 80	2041-12-03	YD151618	Mac 118	2041-12-03	YD151656	Mac 156	2041-12-03
YD151581	Mac 81	2041-12-03	YD151619	Mac 119	2041-12-03	YD151657	Mac 157	2041-12-03
YD151582	Mac 82	2041-12-03	YD151620	Mac 120	2041-12-03	YD151658	Mac 158	2041-12-03
YD151583	Mac 83	2041-12-03	YD151621	Mac 121	2041-12-03	YD151659	Mac 159	2041-12-03
YD151584	Mac 84	2041-12-03	YD151622	Mac 122	2041-12-03	YD151660	Mac 160	2041-12-03
YD151585	Mac 85	2041-12-03	YD151623	Mac 123	2041-12-03	YD151661	Mac 161	2041-12-03
YD151586	Mac 86	2041-12-03	YD151624	Mac 124	2041-12-03	YD151662	Mac 162	2041-12-03
YD151587	Mac 87	2041-12-03	YD151625	Mac 125	2041-12-03	YD151663	Mac 163	2041-12-03
YD151588	Mac 88	2041-12-03	YD151626	Mac 126	2041-12-03	YD151664	Mac 164	2041-12-03
YD151589	Mac 89	2041-12-03	YD151627	Mac 127	2041-12-03	YD151665	Mac 165	2041-12-03
YD151590	Mac 90	2041-12-03	YD151628	Mac 128	2041-12-03	YD151666	Mac 166	2041-12-03
YD151591	Mac 91	2041-12-03	YD151629	Mac 129	2041-12-03	YD151667	Mac 167	2041-12-03
YD151592	Mac 92	2041-12-03	YD151630	Mac 130	2041-12-03	YD151668	Mac 168	2041-12-03
YD151593	Mac 93	2041-12-03	YD151631	Mac 131	2041-12-03	YD151669	Mac 169	2041-12-03
YD151594	Mac 94	2041-12-03	YD151632	Mac 132	2041-12-03	YD151670	Mac 170	2041-12-03

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD151671	Mac 171	2041-12-03	YD151709	Mac 209	2041-12-03	YD151747	Mac 247	2041-12-03
YD151672	Mac 172	2041-12-03	YD151710	Mac 210	2041-12-03	YD151748	Mac 248	2042-12-03
YD151673	Mac 173	2041-12-03	YD151711	Mac 211	2041-12-03	YD151749	Mac 249	2041-12-03
YD151674	Mac 174	2041-12-03	YD151712	Mac 212	2041-12-03	YD151750	Mac 250	2042-12-03
YD151675	Mac 175	2041-12-03	YD151713	Mac 213	2041-12-03	YD151751	Mac 251	2041-12-03
YD151676	Mac 176	2041-12-03	YD151714	Mac 214	2041-12-03	YD151752	Mac 252	2042-12-03
YD151677	Mac 177	2041-12-03	YD151715	Mac 215	2041-12-03	YD151753	Mac 253	2041-12-03
YD151678	Mac 178	2041-12-03	YD151716	Mac 216	2041-12-03	YD151754	Mac 254	2042-12-03
YD151679	Mac 179	2041-12-03	YD151717	Mac 217	2041-12-03	YD151755	Mac 255	2041-12-03
YD151680	Mac 180	2041-12-03	YD151718	Mac 218	2042-12-03	YD151756	Mac 256	2042-12-03
YD151681	Mac 181	2041-12-03	YD151719	Mac 219	2042-12-03	YD151757	Mac 257	2041-12-03
YD151682	Mac 182	2041-12-03	YD151720	Mac 220	2042-12-03	YD151758	Mac 258	2042-12-03
YD151683	Mac 183	2041-12-03	YD151721	Mac 221	2042-12-03	YD151759	Mac 259	2041-12-03
YD151684	Mac 184	2041-12-03	YD151722	Mac 222	2042-12-03	YD151760	Mac 260	2042-12-03
YD151685	Mac 185	2041-12-03	YD151723	Mac 223	2042-12-03	YD151761	Mac 261	2041-12-03
YD151686	Mac 186	2041-12-03	YD151724	Mac 224	2042-12-03	YD151762	Mac 262	2042-12-03
YD151687	Mac 187	2041-12-03	YD151725	Mac 225	2042-12-03	YD151763	Mac 263	2041-12-03
YD151688	Mac 188	2041-12-03	YD151726	Mac 226	2042-12-03	YD151764	Mac 264	2042-12-03
YD151689	Mac 189	2041-12-03	YD151727	Mac 227	2042-12-03	YD151765	Mac 265	2041-12-03
YD151690	Mac 190	2041-12-03	YD151728	Mac 228	2042-12-03	YD151766	Mac 266	2042-12-03
YD151691	Mac 191	2041-12-03	YD151729	Mac 229	2041-12-03	YD151767	Mac 267	2041-12-03
YD151692	Mac 192	2041-12-03	YD151730	Mac 230	2042-12-03	YD151768	Mac 268	2042-12-03
YD151693	Mac 193	2041-12-03	YD151731	Mac 231	2041-12-03	YD151769	Mac 269	2042-12-03
YD151694	Mac 194	2041-12-03	YD151732	Mac 232	2042-12-03	YD151770	Mac 270	2042-12-03
YD151695	Mac 195	2041-12-03	YD151733	Mac 233	2041-12-03	YD151771	Mac 271	2042-12-03
YD151696	Mac 196	2041-12-03	YD151734	Mac 234	2042-12-03	YD151772	Mac 272	2042-12-03
YD151697	Mac 197	2041-12-03	YD151735	Mac 235	2041-12-03	YD151773	Mac 273	2042-12-03
YD151698	Mac 198	2041-12-03	YD151736	Mac 236	2042-12-03	YD151774	Mac 274	2042-12-03
YD151699	Mac 199	2041-12-03	YD151737	Mac 237	2041-12-03	YD151775	Mac 275	2042-12-03
YD151700	Mac 200	2041-12-03	YD151738	Mac 238	2042-12-03	YD151776	Mac 276	2042-12-03
YD151701	Mac 201	2041-12-03	YD151739	Mac 239	2041-12-03	YD151777	Mac 277	2042-12-03
YD151702	Mac 202	2041-12-03	YD151740	Mac 240	2042-12-03	YD151778	Mac 278	2042-12-03
YD151703	Mac 203	2041-12-03	YD151741	Mac 241	2041-12-03	YD151779	Mac 279	2042-12-03
YD151704	Mac 204	2041-12-03	YD151742	Mac 242	2042-12-03	YD151780	Mac 280	2042-12-03
YD151705	Mac 205	2041-12-03	YD151743	Mac 243	2041-12-03	YD151781	Mac 281	2042-12-03
YD151706	Mac 206	2041-12-03	YD151744	Mac 244	2042-12-03	YD151782	Mac 282	2042-12-03
YD151707	Mac 207	2041-12-03	YD151745	Mac 245	2041-12-03	YD151783	Mac 283	2042-12-03
YD151708	Mac 208	2041-12-03	YD151746	Mac 246	2042-12-03	YD151784	Mac 284	2042-12-03

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD151785	Mac 285	2042-12-03	YD151823	Mac 323	2042-12-03	YD151861	Mac 361	2042-12-03
YD151786	Mac 286	2042-12-03	YD151824	Mac 324	2042-12-03	YD151862	Mac 362	2042-12-03
YD151787	Mac 287	2042-12-03	YD151825	Mac 325	2042-12-03	YD151863	Mac 363	2042-12-03
YD151788	Mac 288	2042-12-03	YD151826	Mac 326	2042-12-03	YD151864	Mac 364	2042-12-03
YD151789	Mac 289	2042-12-03	YD151827	Mac 327	2042-12-03	YD151865	Mac 365	2042-12-03
YD151790	Mac 290	2042-12-03	YD151828	Mac 328	2042-12-03	YD151866	Mac 366	2042-12-03
YD151791	Mac 291	2042-12-03	YD151829	Mac 329	2042-12-03	YD151867	Mac 367	2042-12-03
YD151792	Mac 292	2042-12-03	YD151830	Mac 330	2042-12-03	YD151868	Mac 368	2042-12-03
YD151793	Mac 293	2042-12-03	YD151831	Mac 331	2042-12-03	YD151869	Mac 369	2042-12-03
YD151794	Mac 294	2042-12-03	YD151832	Mac 332	2042-12-03	YD151870	Mac 370	2042-12-03
YD151795	Mac 295	2042-12-03	YD151833	Mac 333	2042-12-03	YD151871	Mac 371	2042-12-03
YD151796	Mac 296	2042-12-03	YD151834	Mac 334	2042-12-03	YD151872	Mac 372	2042-12-03
YD151797	Mac 297	2042-12-03	YD151835	Mac 335	2042-12-03	YD151873	Mac 373	2042-12-03
YD151798	Mac 298	2042-12-03	YD151836	Mac 336	2042-12-03	YD151874	Mac 374	2042-12-03
YD151799	Mac 299	2042-12-03	YD151837	Mac 337	2042-12-03	YD151875	Mac 375	2042-12-03
YD151800	Mac 300	2042-12-03	YD151838	Mac 338	2042-12-03	YD151876	Mac 376	2042-12-03
YD151801	Mac 301	2042-12-03	YD151839	Mac 339	2042-12-03	YD151877	Mac 377	2042-12-03
YD151802	Mac 302	2042-12-03	YD151840	Mac 340	2042-12-03	YD151878	Mac 378	2042-12-03
YD151803	Mac 303	2042-12-03	YD151841	Mac 341	2042-12-03	YD151879	Mac 379	2042-12-03
YD151804	Mac 304	2042-12-03	YD151842	Mac 342	2042-12-03	YD151880	Mac 380	2042-12-03
YD151805	Mac 305	2042-12-03	YD151843	Mac 343	2042-12-03	YD151881	Mac 381	2042-12-03
YD151806	Mac 306	2042-12-03	YD151844	Mac 344	2042-12-03	YD151882	Mac 382	2042-12-03
YD151807	Mac 307	2042-12-03	YD151845	Mac 345	2042-12-03	YD151883	Mac 383	2042-12-03
YD151808	Mac 308	2042-12-03	YD151846	Mac 346	2042-12-03	YD151884	Mac 384	2042-12-03
YD151809	Mac 309	2042-12-03	YD151847	Mac 347	2042-12-03	YD151885	Mac 385	2042-12-03
YD151810	Mac 310	2042-12-03	YD151848	Mac 348	2042-12-03	YD151886	Mac 386	2042-12-03
YD151811	Mac 311	2042-12-03	YD151849	Mac 349	2042-12-03	YD151887	Mac 387	2042-12-03
YD151812	Mac 312	2042-12-03	YD151850	Mac 350	2042-12-03	YD151888	Mac 388	2042-12-03
YD151813	Mac 313	2042-12-03	YD151851	Mac 351	2042-12-03	YD151889	Mac 389	2042-12-03
YD151814	Mac 314	2042-12-03	YD151852	Mac 352	2042-12-03	YD151890	Mac 390	2042-12-03
YD151815	Mac 315	2042-12-03	YD151853	Mac 353	2042-12-03	YD151891	Mac 391	2042-12-03
YD151816	Mac 316	2042-12-03	YD151854	Mac 354	2042-12-03	YD151892	Mac 392	2042-12-03
YD151817	Mac 317	2042-12-03	YD151855	Mac 355	2042-12-03	YD151893	Mac 393	2042-12-03
YD151818	Mac 318	2042-12-03	YD151856	Mac 356	2042-12-03	YD151894	Mac 394	2042-12-03
YD151819	Mac 319	2042-12-03	YD151857	Mac 357	2042-12-03	YD151895	Mac 395	2042-12-03
YD151820	Mac 320	2042-12-03	YD151858	Mac 358	2042-12-03	YD151896	Mac 396	2042-12-03
YD151821	Mac 321	2042-12-03	YD151859	Mac 359	2042-12-03	YD151897	Mac 397	2042-12-03
YD151822	Mac 322	2042-12-03	YD151860	Mac 360	2042-12-03	YD151898	Mac 398	2042-12-03

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD151899	Mac 399	2042-12-03	YD151937	Mac 437	2042-12-03	YD151975	Mac 475	2042-12-03
YD151900	Mac 400	2042-12-03	YD151938	Mac 438	2042-12-03	YD151976	Mac 476	2042-12-03
YD151901	Mac 401	2042-12-03	YD151939	Mac 439	2042-12-03	YD151977	Mac 477	2042-12-03
YD151902	Mac 402	2042-12-03	YD151940	Mac 440	2042-12-03	YD151978	Mac 478	2042-12-03
YD151903	Mac 403	2042-12-03	YD151941	Mac 441	2042-12-03	YD151979	Mac 479	2042-12-03
YD151904	Mac 404	2042-12-03	YD151942	Mac 442	2042-12-03	YD151980	Mac 480	2042-12-03
YD151905	Mac 405	2042-12-03	YD151943	Mac 443	2042-12-03	YD151981	Mac 481	2042-12-03
YD151906	Mac 406	2042-12-03	YD151944	Mac 444	2042-12-03	YD151982	Mac 482	2042-12-03
YD151907	Mac 407	2042-12-03	YD151945	Mac 445	2042-12-03	YD151983	Mac 483	2042-12-03
YD151908	Mac 408	2042-12-03	YD151946	Mac 446	2042-12-03	YD151984	Mac 484	2042-12-03
YD151909	Mac 409	2042-12-03	YD151947	Mac 447	2042-12-03	YD151985	Mac 485	2042-12-03
YD151910	Mac 410	2042-12-03	YD151948	Mac 448	2042-12-03	YD151986	Mac 486	2042-12-03
YD151911	Mac 411	2042-12-03	YD151949	Mac 449	2042-12-03	YD151987	Mac 487	2042-12-03
YD151912	Mac 412	2042-12-03	YD151950	Mac 450	2042-12-03	YD151988	Mac 488	2042-12-03
YD151913	Mac 413	2042-12-03	YD151951	Mac 451	2042-12-03	YD151989	Mac 489	2042-12-03
YD151914	Mac 414	2042-12-03	YD151952	Mac 452	2042-12-03	YD151990	Mac 490	2042-12-03
YD151915	Mac 415	2042-12-03	YD151953	Mac 453	2042-12-03	YD151991	Mac 491	2042-12-03
YD151916	Mac 416	2042-12-03	YD151954	Mac 454	2042-12-03	YD151992	Mac 492	2042-12-03
YD151917	Mac 417	2042-12-03	YD151955	Mac 455	2042-12-03	YD151993	Mac 493	2042-12-03
YD151918	Mac 418	2042-12-03	YD151956	Mac 456	2042-12-03	YD151994	Mac 494	2042-12-03
YD151919	Mac 419	2042-12-03	YD151957	Mac 457	2042-12-03	YD151995	Mac 495	2042-12-03
YD151920	Mac 420	2042-12-03	YD151958	Mac 458	2042-12-03	YD151996	Mac 496	2042-12-03
YD151921	Mac 421	2042-12-03	YD151959	Mac 459	2042-12-03	YD151997	Mac 497	2042-12-03
YD151922	Mac 422	2042-12-03	YD151960	Mac 460	2042-12-03	YD151998	Mac 498	2042-12-03
YD151923	Mac 423	2042-12-03	YD151961	Mac 461	2042-12-03	YD151999	Mac 499	2042-12-03
YD151924	Mac 424	2042-12-03	YD151962	Mac 462	2042-12-03	YD152000	Mac 500	2042-12-03
YD151925	Mac 425	2042-12-03	YD151963	Mac 463	2042-12-03	YD152001	Mac 501	2042-12-03
YD151926	Mac 426	2042-12-03	YD151964	Mac 464	2042-12-03	YD152002	Mac 502	2042-12-03
YD151927	Mac 427	2042-12-03	YD151965	Mac 465	2042-12-03	YD128103	Mac 503	2042-12-03
YD151928	Mac 428	2042-12-03	YD151966	Mac 466	2042-12-03	YD128104	Mac 504	2042-12-03
YD151929	Mac 429	2042-12-03	YD151967	Mac 467	2042-12-03	YD128105	Mac 505	2042-12-03
YD151930	Mac 430	2042-12-03	YD151968	Mac 468	2042-12-03	YD128106	Mac 506	2042-12-03
YD151931	Mac 431	2042-12-03	YD151969	Mac 469	2042-12-03	YD128107	Mac 507	2042-12-03
YD151932	Mac 432	2042-12-03	YD151970	Mac 470	2042-12-03	YD128108	Mac 508	2042-12-03
YD151933	Mac 433	2042-12-03	YD151971	Mac 471	2042-12-03	YD128109	Mac 509	2042-12-03
YD151934	Mac 434	2042-12-03	YD151972	Mac 472	2042-12-03	YD128110	Mac 510	2042-12-03
YD151935	Mac 435	2042-12-03	YD151973	Mac 473	2042-12-03	YD128111	Mac 511	2042-12-03
YD151936	Mac 436	2042-12-03	YD151974	Mac 474	2042-12-03	YD128112	Mac 512	2042-12-03

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD128113	Mac 513	2042-12-03	YD128151	Mac 551	2042-12-03	YD128189	Mac 589	2042-12-03
YD128114	Mac 514	2042-12-03	YD128152	Mac 552	2042-12-03	YD128190	Mac 590	2042-12-03
YD128115	Mac 515	2042-12-03	YD128153	Mac 553	2042-12-03	YD128191	Mac 591	2042-12-03
YD128116	Mac 516	2042-12-03	YD128154	Mac 554	2042-12-03	YD128192	Mac 592	2042-12-03
YD128117	Mac 517	2042-12-03	YD128155	Mac 555	2042-12-03	YD128193	Mac 593	2042-12-03
YD128118	Mac 518	2042-12-03	YD128156	Mac 556	2042-12-03	YD128194	Mac 594	2042-12-03
YD128119	Mac 519	2042-12-03	YD128157	Mac 557	2042-12-03	YD128195	Mac 595	2042-12-03
YD128120	Mac 520	2042-12-03	YD128158	Mac 558	2042-12-03	YD128196	Mac 596	2042-12-03
YD128121	Mac 521	2042-12-03	YD128159	Mac 559	2042-12-03	YD128197	Mac 597	2042-12-03
YD128122	Mac 522	2042-12-03	YD128160	Mac 560	2042-12-03	YD128198	Mac 598	2042-12-03
YD128123	Mac 523	2042-12-03	YD128161	Mac 561	2042-12-03	YD128199	Mac 599	2042-12-03
YD128124	Mac 524	2042-12-03	YD128162	Mac 562	2042-12-03	YD128200	Mac 600	2042-12-03
YD128125	Mac 525	2042-12-03	YD128163	Mac 563	2042-12-03	YD128201	Mac 601	2042-12-03
YD128126	Mac 526	2042-12-03	YD128164	Mac 564	2042-12-03	YD128202	Mac 602	2042-12-03
YD128127	Mac 527	2042-12-03	YD128165	Mac 565	2042-12-03	YD128203	Mac 603	2042-12-03
YD128128	Mac 528	2042-12-03	YD128166	Mac 566	2042-12-03	YD128204	Mac 604	2042-12-03
YD128129	Mac 529	2042-12-03	YD128167	Mac 567	2042-12-03	YD128205	Mac 605	2042-12-03
YD128130	Mac 530	2042-12-03	YD128168	Mac 568	2042-12-03	YD128206	Mac 606	2042-12-03
YD128131	Mac 531	2042-12-03	YD128169	Mac 569	2042-12-03	YD128207	Mac 607	2042-12-03
YD128132	Mac 532	2042-12-03	YD128170	Mac 570	2042-12-03	YD128208	Mac 608	2042-12-03
YD128133	Mac 533	2042-12-03	YD128171	Mac 571	2042-12-03	YD128209	Mac 609	2042-12-03
YD128134	Mac 534	2042-12-03	YD128172	Mac 572	2042-12-03	YD128210	Mac 610	2042-12-03
YD128135	Mac 535	2042-12-03	YD128173	Mac 573	2042-12-03	YD128211	Mac 611	2042-12-03
YD128136	Mac 536	2042-12-03	YD128174	Mac 574	2042-12-03	YD128212	Mac 612	2042-12-03
YD128137	Mac 537	2042-12-03	YD128175	Mac 575	2042-12-03	YD128213	Mac 613	2042-12-03
YD128138	Mac 538	2042-12-03	YD128176	Mac 576	2042-12-03	YD128214	Mac 614	2042-12-03
YD128139	Mac 539	2042-12-03	YD128177	Mac 577	2042-12-03	YD128215	Mac 615	2042-12-03
YD128140	Mac 540	2042-12-03	YD128178	Mac 578	2042-12-03	YD128216	Mac 616	2042-12-03
YD128141	Mac 541	2042-12-03	YD128179	Mac 579	2042-12-03	YD128217	Mac 617	2042-12-03
YD128142	Mac 542	2042-12-03	YD128180	Mac 580	2042-12-03	YD128218	Mac 618	2042-12-03
YD128143	Mac 543	2042-12-03	YD128181	Mac 581	2042-12-03	YD128219	Mac 619	2042-12-03
YD128144	Mac 544	2042-12-03	YD128182	Mac 582	2042-12-03	YD128220	Mac 620	2042-12-03
YD128145	Mac 545	2042-12-03	YD128183	Mac 583	2042-12-03	YD128221	Mac 621	2042-12-03
YD128146	Mac 546	2042-12-03	YD128184	Mac 584	2042-12-03	YD128222	Mac 622	2042-12-03
YD128147	Mac 547	2042-12-03	YD128185	Mac 585	2042-12-03	YD128223	Mac 623	2042-12-03
YD128148	Mac 548	2042-12-03	YD128186	Mac 586	2042-12-03	YD128224	Mac 624	2042-12-03
YD128149	Mac 549	2042-12-03	YD128187	Mac 587	2042-12-03	YD128225	Mac 625	2042-12-03
YD128150	Mac 550	2042-12-03	YD128188	Mac 588	2042-12-03	YD128226	Mac 626	2042-12-03

Contiguous	Macpass C	laims	Contiguous	s Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD128227	Mac 627	2042-12-03	YD128265	Mac 665	2042-12-03	YD128303	Mac 703	2042-12-03
YD128228	Mac 628	2042-12-03	YD128266	Mac 666	2042-12-03	YD128304	Mac 704	2042-12-03
YD128229	Mac 629	2042-12-03	YD128267	Mac 667	2042-12-03	YD128305	Mac 705	2042-12-03
YD128230	Mac 630	2042-12-03	YD128268	Mac 668	2042-12-03	YD128306	Mac 706	2042-12-03
YD128231	Mac 631	2042-12-03	YD128269	Mac 669	2042-12-03	YD128307	Mac 707	2042-12-03
YD128232	Mac 632	2042-12-03	YD128270	Mac 670	2042-12-03	YD128308	Mac 708	2042-12-03
YD128233	Mac 633	2042-12-03	YD128271	Mac 671	2042-12-03	YD128309	Mac 709	2042-12-03
YD128234	Mac 634	2042-12-03	YD128272	Mac 672	2042-12-03	YD128310	Mac 710	2042-12-03
YD128235	Mac 635	2042-12-03	YD128273	Mac 673	2042-12-03	YD128311	Mac 711	2042-12-03
YD128236	Mac 636	2042-12-03	YD128274	Mac 674	2042-12-03	YD128312	Mac 712	2042-12-03
YD128237	Mac 637	2042-12-03	YD128275	Mac 675	2042-12-03	YD128313	Mac 713	2042-12-03
YD128238	Mac 638	2042-12-03	YD128276	Mac 676	2042-12-03	YD128314	Mac 714	2042-12-03
YD128239	Mac 639	2042-12-03	YD128277	Mac 677	2042-12-03	YD128315	Mac 715	2042-12-03
YD128240	Mac 640	2042-12-03	YD128278	Mac 678	2042-12-03	YD128316	Mac 716	2042-12-03
YD128241	Mac 641	2042-12-03	YD128279	Mac 679	2042-12-03	YD128317	Mac 717	2042-12-03
YD128242	Mac 642	2042-12-03	YD128280	Mac 680	2042-12-03	YD128318	Mac 718	2042-12-03
YD128243	Mac 643	2042-12-03	YD128281	Mac 681	2042-12-03	YD128319	Mac 719	2042-12-03
YD128244	Mac 644	2042-12-03	YD128282	Mac 682	2042-12-03	YD128320	Mac 720	2042-12-03
YD128245	Mac 645	2042-12-03	YD128283	Mac 683	2042-12-03	YD128321	Mac 721	2042-12-03
YD128246	Mac 646	2042-12-03	YD128284	Mac 684	2042-12-03	YD128322	Mac 722	2042-12-03
YD128247	Mac 647	2042-12-03	YD128285	Mac 685	2042-12-03	YD128323	Mac 723	2042-12-03
YD128248	Mac 648	2042-12-03	YD128286	Mac 686	2042-12-03	YD128324	Mac 724	2042-12-03
YD128249	Mac 649	2042-12-03	YD128287	Mac 687	2042-12-03	YD128325	Mac 725	2042-12-03
YD128250	Mac 650	2042-12-03	YD128288	Mac 688	2042-12-03	YD128326	Mac 726	2042-12-03
YD128251	Mac 651	2042-12-03	YD128289	Mac 689	2042-12-03	YD128327	Mac 727	2042-12-03
YD128252	Mac 652	2042-12-03	YD128290	Mac 690	2042-12-03	YD128328	Mac 728	2042-12-03
YD128253	Mac 653	2042-12-03	YD128291	Mac 691	2042-12-03	YD128329	Mac 729	2042-12-03
YD128254	Mac 654	2042-12-03	YD128292	Mac 692	2042-12-03	YD128330	Mac 730	2042-12-03
YD128255	Mac 655	2042-12-03	YD128293	Mac 693	2042-12-03	YD128331	Mac 731	2042-12-03
YD128256	Mac 656	2042-12-03	YD128294	Mac 694	2042-12-03	YD128332	Mac 732	2042-12-03
YD128257	Mac 657	2042-12-03	YD128295	Mac 695	2042-12-03	YD128333	Mac 733	2042-12-03
YD128258	Mac 658	2042-12-03	YD128296	Mac 696	2042-12-03	YD128334	Mac 734	2042-12-03
YD128259	Mac 659	2042-12-03	YD128297	Mac 697	2042-12-03	YD128335	Mac 735	2042-12-03
YD128260	Mac 660	2042-12-03	YD128298	Mac 698	2042-12-03	YD128336	Mac 736	2042-12-03
YD128261	Mac 661	2042-12-03	YD128299	Mac 699	2042-12-03	YD128337	Mac 737	2042-12-03
YD128262	Mac 662	2042-12-03	YD128300	Mac 700	2042-12-03	YD128338	Mac 738	2042-12-03
YD128263	Mac 663	2042-12-03	YD128301	Mac 701	2042-12-03	YD128339	Mac 739	2042-12-03
YD128264	Mac 664	2042-12-03	YD128302	Mac 702	2042-12-03	YD128340	Mac 740	2042-12-03

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	Macpass Cl	aims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD128341	Mac 741	2042-12-03	YD128381	Mac 781	2042-12-03	YD120085	Mac 819	2042-12-03
YD128342	Mac 742	2042-12-03	YD128382	Mac 782	2042-12-03	YD120086	Mac 820	2042-12-03
YD128343	Mac 743	2042-12-03	YD128383	Mac 783	2042-12-03	YD128102	Mac 761a	2042-12-03
YD128344	Mac 744	2042-12-03	YD128384	Mac 784	2042-12-03	YD128101	Mac 762a	2042-12-03
YD128345	Mac 745	2042-12-03	YD128385	Mac 785	2042-12-03	YE29071	MC 1	2036-12-03
YD128346	Mac 746	2042-12-03	YD128386	Mac 786	2042-12-03	YE29072	MC 2	2036-12-03
YD128347	Mac 747	2042-12-03	YD128387	Mac 787	2042-12-03	YE29073	MC 3	2036-12-03
YD128348	Mac 748	2042-12-03	YD128388	Mac 788	2042-12-03	YE29074	MC 4	2036-12-03
YD128349	Mac 749	2042-12-03	YD128389	Mac 789	2042-12-03	YE29075	MC 5	2036-12-03
YD128350	Mac 750	2042-12-03	YD128390	Mac 790	2042-12-03	YE29076	MC 6	2036-12-03
YD128351	Mac 751	2042-12-03	YD128391	Mac 791	2042-12-03	YE29077	MC 7	2036-12-03
YD128352	Mac 752	2042-12-03	YD128392	Mac 792	2042-12-03	YE29078	MC 8	2036-12-03
YD128353	Mac 753	2042-12-03	YD128393	Mac 793	2042-12-03	YE29079	MC 9	2036-12-03
YD128354	Mac 754	2042-12-03	YD128394	Mac 794	2042-12-03	YE29080	MC 10	2036-12-03
YD128355	Mac 755	2042-12-03	YD128395	Mac 795	2042-12-03	YE29081	MC 11	2036-12-03
YD128356	Mac 756	2042-12-03	YD128396	Mac 796	2042-12-03	YE29082	MC 12	2036-12-03
YD128357	Mac 757	2042-12-03	YD128397	Mac 797	2042-12-03	YE29083	MC 13	2036-12-03
YD128358	Mac 758	2042-12-03	YD128398	Mac 798	2042-12-03	YE29084	MC 14	2036-12-03
YD128082	Mac 759	2042-12-03	YD128399	Mac 799	2042-12-03	YE29085	MC 15	2036-12-03
YD128081	Mac 760	2042-12-03	YD128400	Mac 800	2042-12-03	YE29086	MC 16	2036-12-03
YD128361	Mac 761	2042-12-03	YD128401	Mac 801	2042-12-03	YE29087	MC 17	2036-12-03
YD128362	Mac 762	2042-12-03	YD128402	Mac 802	2042-12-03	YE29088	MC 18	2036-12-03
YD128363	Mac 763	2042-12-03	YD120262	Mac 803	2042-12-03	YE29089	MC 19	2036-12-03
YD128364	Mac 764	2042-12-03	YD120263	Mac 804	2042-12-03	YE29090	MC 20	2036-12-03
YD128365	Mac 765	2042-12-03	YD120264	Mac 805	2042-12-03	YE29091	MC 21	2034-12-03
YD128366	Mac 766	2042-12-03	YD120265	Mac 806	2042-12-03	YE29092	MC 22	2034-12-03
YD128367	Mac 767	2042-12-03	YD120266	Mac 807	2042-12-03	YE29093	MC 23	2034-12-03
YD128368	Mac 768	2042-12-03	YD120267	Mac 808	2042-12-03	YE29094	MC 24	2034-12-03
YD128369	Mac 769	2042-12-03	YD120268	Mac 809	2042-12-03	YE29095	MC 25	2034-12-03
YD128370	Mac 770	2042-12-03	YD120269	Mac 810	2042-12-03	YE29096	MC 26	2034-12-03
YD128371	Mac 771	2042-12-03	YD120270	Mac 811	2042-12-03	YE29097	MC 27	2036-12-03
YD128372	Mac 772	2042-12-03	YD120271	Mac 812	2042-12-03	YE29098	MC 28	2036-12-03
YD128373	Mac 773	2042-12-03	YD74032	Mac 813	2042-12-03	YE29099	MC 29	2036-12-03
YD128374	Mac 774	2042-12-03	YD74033	Mac 814	2042-12-03	YE29100	MC 30	2036-12-03
YD128375	Mac 775	2042-12-03	YD74034	Mac 815	2042-12-03	YE29101	MC 31	2036-12-03
YD128376	Mac 776	2042-12-03	YD74035	Mac 816	2042-12-03	YE29102	MC 32	2036-12-03
YD128379	Mac 779	2042-12-03	YD74036	Mac 817	2042-12-03	YE29103	MC 33	2036-12-03
YD128380	Mac 780	2042-12-03	YD120084	Mac 818	2042-12-03	YE29104	MC 34	2036-12-03

Contiguou	s Macpass (Claims	Contiguou	s Macpass C	laims	Contiguou	Contiguous Macpass Claims		
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE29105	MC 35	2036-12-03	YE29143	MC 73	2034-12-03	YE29181	MC 111	2036-12-03	
YE29106	MC 36	2036-12-03	YE29144	MC 74	2034-12-03	YE29182	MC 112	2036-12-03	
YE29107	MC 37	2036-12-03	YE29145	MC 75	2034-12-03	YE29183	MC 113	2036-12-03	
YE29108	MC 38	2036-12-03	YE29146	MC 76	2034-12-03	YE29184	MC 114	2036-12-03	
YE29109	MC 39	2036-12-03	YE29147	MC 77	2034-12-03	YE29185	MC 115	2036-12-03	
YE29110	MC 40	2036-12-03	YE29148	MC 78	2034-12-03	YE29186	MC 116	2034-12-03	
YE29111	MC 41	2036-12-03	YE29149	MC 79	2036-12-03	YE29187	MC 117	2034-12-03	
YE29112	MC 42	2036-12-03	YE29150	MC 80	2036-12-03	YE29188	MC 118	2034-12-03	
YE29113	MC 43	2034-12-03	YE29151	MC 81	2036-12-03	YE29189	MC 119	2034-12-03	
YE29114	MC 44	2034-12-03	YE29152	MC 82	2036-12-03	YE29190	MC 120	2034-12-03	
YE29115	MC 45	2034-12-03	YE29153	MC 83	2036-12-03	YE29191	MC 121	2034-12-03	
YE29116	MC 46	2034-12-03	YE29154	MC 84	2036-12-03	YE29192	MC 122	2034-12-03	
YE29117	MC 47	2034-12-03	YE29155	MC 85	2036-12-03	YE29193	MC 123	2034-12-03	
YE29118	MC 48	2034-12-03	YE29156	MC 86	2036-12-03	YE29194	MC 124	2034-12-03	
YE29119	MC 49	2034-12-03	YE29157	MC 87	2036-12-03	YE29195	MC 125	2034-12-03	
YE29120	MC 50	2034-12-03	YE29158	MC 88	2036-12-03	YE29196	MC 126	2034-12-03	
YE29121	MC 51	2034-12-03	YE29159	MC 89	2036-12-03	YE29197	MC 127	2034-12-03	
YE29122	MC 52	2034-12-03	YE29160	MC 90	2036-12-03	YE29198	MC 128	2034-12-03	
YE29123	MC 53	2036-12-03	YE29161	MC 91	2034-12-03	YE29199	MC 129	2034-12-03	
YE29124	MC 54	2036-12-03	YE29162	MC 92	2034-12-03	YE29200	MC 130	2034-12-03	
YE29125	MC 55	2036-12-03	YE29163	MC 93	2034-12-03	YE29201	MC 131	2034-12-03	
YE29126	MC 56	2036-12-03	YE29164	MC 94	2034-12-03	YE29202	MC 132	2034-12-03	
YE29127	MC 57	2036-12-03	YE29165	MC 95	2034-12-03	YE29203	MC 133	2034-12-03	
YE29128	MC 58	2036-12-03	YE29166	MC 96	2034-12-03	YE29204	MC 134	2034-12-03	
YE29129	MC 59	2036-12-03	YE29167	MC 97	2034-12-03	YE29205	MC 135	2034-12-03	
YE29130	MC 60	2036-12-03	YE29168	MC 98	2034-12-03	YE29206	MC 136	2034-12-03	
YE29131	MC 61	2036-12-03	YE29169	MC 99	2034-12-03	YE29207	MC 137	2034-12-03	
YE29132	MC 62	2036-12-03	YE29170	MC 100	2034-12-03	YE29208	MC 138	2034-12-03	
YE29133	MC 63	2036-12-03	YE29171	MC 101	2034-12-03	YE29209	MC 139	2034-12-03	
YE29134	MC 64	2036-12-03	YE29172	MC 102	2034-12-03	YE29210	MC 140	2034-12-03	
YE29135	MC 65	2036-12-03	YE29173	MC 103	2034-12-03	YE29211	MC 141	2034-12-03	
YE29136	MC 66	2036-12-03	YE29174	MC 104	2034-12-03	YE29212	MC 142	2034-12-03	
YE29137	MC 67	2036-12-03	YE29175	MC 105	2036-12-03	YE29213	MC 143	2034-12-03	
YE29138	MC 68	2036-12-03	YE29176	MC 106	2036-12-03	YE29214	MC 144	2034-12-03	
YE29139	MC 69	2034-12-03	YE29177	MC 107	2036-12-03	YE29215	MC 145	2034-12-03	
YE29140	MC 70	2034-12-03	YE29178	MC 108	2036-12-03	YE29216	MC 146	2034-12-03	
YE29141	MC 71	2034-12-03	YE29179	MC 109	2036-12-03	YE29217	MC 147	2034-12-03	
YE29142	MC 72	2034-12-03	YE29180	MC 110	2036-12-03	YE29218	MC 148	2034-12-03	

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date		
YE29219	MC 149	2034-12-03	YE29257	MC 187	2036-12-03	YE29295	MC 225	2034-12-03		
YE29220	MC 150	2034-12-03	YE29258	MC 188	2036-12-03	YE29296	MC 226	2034-12-03		
YE29221	MC 151	2034-12-03	YE29259	MC 189	2036-12-03	YE29297	MC 227	2034-12-03		
YE29222	MC 152	2034-12-03	YE29260	MC 190	2036-12-03	YE29298	MC 228	2034-12-03		
YE29223	MC 153	2034-12-03	YE29261	MC 191	2036-12-03	YE29299	MC 229	2034-12-03		
YE29224	MC 154	2034-12-03	YE29262	MC 192	2036-12-03	YE29300	MC 230	2034-12-03		
YE29225	MC 155	2034-12-03	YE29263	MC 193	2036-12-03	YE29301	MC 231	2034-12-03		
YE29226	MC 156	2034-12-03	YE29264	MC 194	2036-12-03	YE29302	MC 232	2036-12-03		
YE29227	MC 157	2034-12-03	YE29265	MC 195	2036-12-03	YE29303	MC 233	2036-12-03		
YE29228	MC 158	2034-12-03	YE29266	MC 196	2034-12-03	YE29304	MC 234	2036-12-03		
YE29229	MC 159	2034-12-03	YE29267	MC 197	2034-12-03	YE29305	MC 235	2036-12-03		
YE29230	MC 160	2034-12-03	YE29268	MC 198	2034-12-03	YE29306	MC 236	2034-12-03		
YE29231	MC 161	2034-12-03	YE29269	MC 199	2034-12-03	YE29307	MC 237	2034-12-03		
YE29232	MC 162	2034-12-03	YE29270	MC 200	2034-12-03	YE29308	MC 238	2034-12-03		
YE29233	MC 163	2034-12-03	YE29271	MC 201	2034-12-03	YE29309	MC 239	2034-12-03		
YE29234	MC 164	2036-12-03	YE29272	MC 202	2034-12-03	YE29310	MC 240	2034-12-03		
YE29235	MC 165	2036-12-03	YE29273	MC 203	2034-12-03	YE29311	MC 241	2034-12-03		
YE29236	MC 166	2036-12-03	YE29274	MC 204	2034-12-03	YE29312	MC 242	2034-12-03		
YE29237	MC 167	2036-12-03	YE29275	MC 205	2034-12-03	YE29313	MC 243	2034-12-03		
YE29238	MC 168	2034-12-03	YE29276	MC 206	2034-12-03	YE29314	MC 244	2034-12-03		
YE29239	MC 169	2034-12-03	YE29277	MC 207	2034-12-03	YE29315	MC 245	2034-12-03		
YE29240	MC 170	2034-12-03	YE29278	MC 208	2034-12-03	YE29316	MC 246	2034-12-03		
YE29241	MC 171	2034-12-03	YE29279	MC 209	2034-12-03	YE29317	MC 247	2034-12-03		
YE29242	MC 172	2034-12-03	YE29280	MC 210	2036-12-03	YE29318	MC 248	2034-12-03		
YE29243	MC 173	2034-12-03	YE29281	MC 211	2036-12-03	YE29319	MC 249	2034-12-03		
YE29244	MC 174	2034-12-03	YE29282	MC 212	2036-12-03	YE29320	MC 250	2034-12-03		
YE29245	MC 175	2034-12-03	YE29283	MC 213	2036-12-03	YE29321	MC 251	2034-12-03		
YE29246	MC 176	2034-12-03	YE29284	MC 214	2036-12-03	YE29322	MC 252	2036-12-03		
YE29247	MC 177	2034-12-03	YE29285	MC 215	2036-12-03	YE29323	MC 253	2036-12-03		
YE29248	MC 178	2034-12-03	YE29286	MC 216	2034-12-03	YE29324	MC 254	2034-12-03		
YE29249	MC 179	2034-12-03	YE29287	MC 217	2034-12-03	YE29325	MC 255	2034-12-03		
YE29250	MC 180	2034-12-03	YE29288	MC 218	2034-12-03	YE29326	MC 256	2034-12-03		
YE29251	MC 181	2034-12-03	YE29289	MC 219	2034-12-03	YE29327	MC 257	2034-12-03		
YE29252	MC 182	2034-12-03	YE29290	MC 220	2034-12-03	YE29328	MC 258	2034-12-03		
YE29253	MC 183	2034-12-03	YE29291	MC 221	2034-12-03	YE29329	MC 259	2034-12-03		
YE29254	MC 184	2034-12-03	YE29292	MC 222	2034-12-03	YE29330	MC 260	2034-12-03		
YE29255	MC 185	2036-12-03	YE29293	MC 223	2034-12-03	YE29331	MC 261	2034-12-03		
YE29256	MC 186	2036-12-03	YE29294	MC 224	2034-12-03	YE29332	MC 262	2034-12-03		

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	Contiguous Macpass Cla Grant Claim		
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE29333	MC 263	2034-12-03	YE29451	MC 301	2034-12-03	YA11543	MIKE 6	2038-12-31	
YE29334	MC 264	2034-12-03	YE29452	MC 302	2034-12-03	YA11544	MIKE 7	2038-12-31	
YE29335	MC 265	2034-12-03	YE29453	MC 303	2034-12-03	YA11545	MIKE 8	2038-12-31	
YE29336	MC 266	2034-12-03	YE29454	MC 304	2036-12-03	YA11546	MIKE 9	2038-12-31	
YE29337	MC 267	2034-12-03	YE29455	MC 305	2036-12-03	YA11547	MIKE 10	2038-12-31	
YE29338	MC 268	2034-12-03	YE29456	MC 306	2036-12-03	YE29341	MP 1	2037-12-03	
YE29339	MC 269	2034-12-03	YE29457	MC 307	2036-12-03	YE29342	MP 2	2037-12-03	
YE29420	MC 270	2036-12-03	YE29458	MC 308	2036-12-03	YE29343	MP 3	2037-12-03	
YE29421	MC 271	2036-12-03	YE29459	MC 309	2034-12-03	YE29344	MP 4	2037-12-03	
YE29422	MC 272	2036-12-03	YE29461	MC 311	2034-12-03	YE29345	MP 5	2037-12-03	
YE29423	MC 273	2036-12-03	YE29463	MC 313	2034-12-03	YE29346	MP 6	2037-12-03	
YE29424	MC 274	2036-12-03	YE29465	MC 315	2034-12-03	YE29347	MP 7	2037-12-03	
YE29425	MC 275	2036-12-03	YE29467	MC 317	2034-12-03	YE29348	MP 8	2037-12-03	
YE29426	MC 276	2034-12-03	YE29469	MC 319	2034-12-03	YE29349	MP 9	2037-12-03	
YE29427	MC 277	2034-12-03	YE29470	MC 320	2034-12-03	YE29350	MP 10	2037-12-03	
YE29428	MC 278	2036-12-03	YE29471	MC 321	2034-12-03	YE29351	MP 11	2039-12-03	
YE29429	MC 279	2036-12-03	YE29472	MC 322	2034-12-03	YE29352	MP 12	2037-12-03	
YE29430	MC 280	2036-12-03	YE29473	MC 323	2034-12-03	YE29353	MP 13	2039-12-03	
YE29431	MC 281	2036-12-03	YE29474	MC 324	2034-12-03	YE29354	MP 14	2037-12-03	
YE29432	MC 282	2034-12-03	YE29475	MC 325	2034-12-03	YE29355	MP 15	2037-12-03	
YE29433	MC 283	2034-12-03	YE29476	MC 326	2034-12-03	YE29356	MP 16	2039-12-03	
YE29434	MC 284	2034-12-03	YE29477	MC 327	2036-12-03	YE29357	MP 17	2039-12-03	
YE29435	MC 285	2034-12-03	YE29478	MC 328	2036-12-03	YE29358	MP 18	2039-12-03	
YE29436	MC 286	2036-12-03	YE29479	MC 329	2036-12-03	YE29359	MP 19	2039-12-03	
YE29437	MC 287	2036-12-03	YE29480	MC 330	2036-12-03	YE29360	MP 20	2039-12-03	
YE29438	MC 288	2036-12-03	YE29481	MC 331	2036-12-03	YE29361	MP 21	2039-12-03	
YE29439	MC 289	2036-12-03	YE29482	MC 332	2034-12-03	YE29362	MP 22	2037-12-03	
YE29440	MC 290	2034-12-03	YE29483	MC 333	2034-12-03	YE29363	MP 23	2039-12-03	
YE29441	MC 291	2034-12-03	YE29484	MC 334	2034-12-03	YE29364	MP 24	2037-12-03	
YE29442	MC 292	2034-12-03	YE29485	MC 335	2034-12-03	YE29365	MP 25	2039-12-03	
YE29443	MC 293	2034-12-03	YE29487	MC 337	2034-12-03	YE29366	MP 26	2039-12-03	
YE29444	MC 294	2036-12-03	YE29488	MC 338	2034-12-03	YE29367	MP 27	2039-12-03	
YE29445	MC 295	2036-12-03	YE29489	MC 339	2034-12-03	YE29368	MP 28	2037-12-03	
YE29446	MC 296	2036-12-03	YA00024	MIKE 1	2038-12-31	YE29369	MP 29	2039-12-03	
YE29447	MC 297	2036-12-03	YA00025	MIKE 2	2038-12-31	YE29370	MP 30	2037-12-03	
YE29448	MC 298	2034-12-03	YA00805	MIKE 3	2038-12-31	YE29371	MP 31	2037-12-03	
YE29449	MC 299	2034-12-03	YA11541	MIKE 4	2038-12-31	YE29372	MP 32	2037-12-03	
YE29450	MC 300	2034-12-03	YA11542	MIKE 5	2038-12-31	YE29373	MP 33	2037-12-03	

Contiguou	s Macpass (Claims	Contiguou	s Macpass C	laims	Contiguou	laims	
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YE29374	MP 34	2037-12-03	YE29412	MP 72	2037-12-03	YA07285	Nidd 51	2044-12-03
YE29375	MP 35	2037-12-03	YE29413	MP 73	2037-12-03	YA07286	Nidd 55	2044-12-03
YE29376	MP 36	2037-12-03	YE29414	MP 74	2037-12-03	YA07287	Nidd 56	2044-12-03
YE29377	MP 37	2037-12-03	YE47321	NC 1	2031-06-06	YA07288	Nidd 57	2044-12-03
YE29378	MP 38	2037-12-03	YE47322	NC 2	2031-06-06	YA07289	Nidd 58	2044-12-03
YE29379	MP 39	2039-12-03	YE47323	NC 3	2031-06-06	YA07290	Nidd 63	2044-12-03
YE29380	MP 40	2039-12-03	YE47324	NC 4	2031-06-06	YA07291	Nidd 64	2044-12-03
YE29381	MP 41	2039-12-03	YE47325	NC 5	2031-06-06	YA07292	Nidd 65	2044-12-03
YE29382	MP 42	2039-12-03	YE47326	NC 6	2031-06-06	YA07293	Nidd 66	2044-12-03
YE29383	MP 43	2039-12-03	YE47327	NC 7	2031-06-06	YA07294	Nidd 70	2044-12-03
YE29384	MP 44	2039-12-03	YA07254	Nidd 14	2044-12-03	YA07295	Nidd 71	2044-12-03
YE29385	MP 45	2039-12-03	YA07256	Nidd 16	2044-12-03	YA07296	Nidd 72	2044-12-03
YE29386	MP 46	2039-12-03	YA07258	Nidd 18	2044-12-03	YA07297	Nidd 73	2044-12-03
YE29387	MP 47	2037-12-03	YA07260	Nidd 20	2044-12-03	YA07298	Nidd 76	2044-12-03
YE29388	MP 48	2039-12-03	YA07261	Nidd 21	2044-12-03	YA07299	Nidd 77	2044-12-03
YE29389	MP 49	2037-12-03	YA07262	Nidd 22	2044-12-03	YA07300	Nidd 78	2044-12-03
YE29390	MP 50	2037-12-03	YA07263	Nidd 23	2044-12-03	YA07301	Nidd 79	2044-12-03
YE29391	MP 51	2037-12-03	YA07264	Nidd 24	2044-12-03	YA07302	Nidd 81	2044-12-03
YE29392	MP 52	2039-12-03	YA07265	Nidd 25	2044-12-03	YA07303	Nidd 82	2044-12-03
YE29393	MP 53	2037-12-03	YA07266	Nidd 26	2044-12-03	YA07304	Nidd 83	2044-12-03
YE29394	MP 54	2037-12-03	YA07267	Nidd 27	2044-12-03	YA07305	Nidd 84	2044-12-03
YE29395	MP 55	2037-12-03	YA07268	Nidd 28	2044-12-03	YA07306	Nidd 85	2044-12-03
YE29396	MP 56	2037-12-03	YA07269	Nidd 29	2044-12-03	YA07307	Nidd 88	2044-12-03
YE29397	MP 57	2037-12-03	YA07270	Nidd 30	2044-12-03	YA07308	Nidd 89	2044-12-03
YE29398	MP 58	2037-12-03	YA07271	Nidd 31	2041-12-03	YA07309	Nidd 90	2044-12-03
YE29399	MP 59	2037-12-03	YA07272	Nidd 32	2041-12-03	YA07310	Nidd 91	2044-12-03
YE29400	MP 60	2037-12-03	YA07273	Nidd 33	2044-12-03	YA07311	Nidd 92	2044-12-03
YE29401	MP 61	2037-12-03	YA07274	Nidd 34	2044-12-03	YA07312	Nidd 93	2044-12-03
YE29402	MP 62	2037-12-03	YA07275	Nidd 35	2044-12-03	YA07313	Nidd 95	2044-12-03
YE29403	MP 63	2037-12-03	YA07276	Nidd 36	2044-12-03	YA07314	Nidd 96	2044-12-03
YE29404	MP 64	2037-12-03	YA07277	Nidd 37	2044-12-03	YA07315	Nidd 97	2044-12-03
YE29405	MP 65	2037-12-03	YA07278	Nidd 38	2044-12-03	YA07316	Nidd 98	2044-12-03
YE29406	MP 66	2037-12-03	YA07279	Nidd 39	2044-12-03	YA07317	Nidd 99	2044-12-03
YE29407	MP 67	2037-12-03	YA07280	Nidd 40	2044-12-03	YA07318	Nidd 100	2044-12-03
YE29408	MP 68	2037-12-03	YA07281	Nidd 47	2044-12-03	YA07319	Nidd 101	2044-12-03
YE29409	MP 69	2037-12-03	YA07282	Nidd 48	2044-12-03	YA07320	Nidd 104	2044-12-03
YE29410	MP 70	2037-12-03	YA07283	Nidd 49	2044-12-03	YA07321	Nidd 105	2044-12-03
YE29411	MP 71	2037-12-03	YA07284	Nidd 50	2044-12-03	YA07322	Nidd 106	2044-12-03

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YA07323	Nidd 107	2044-12-03	YA07362	Nidd 163	2044-12-03	YA15441	Nidd 330	2044-12-03
YA07324	Nidd 108	2044-12-03	YA07363	Nidd 165	2044-12-03	YA15442	Nidd 331	2044-12-03
YA07325	Nidd 109	2044-12-03	YA07364	Nidd 167	2044-12-03	YA15443	Nidd 332	2044-12-03
YA07326	Nidd 110	2044-12-03	YA07365	Nidd 169	2044-12-03	YA15444	Nidd 333	2044-12-03
YA07327	Nidd 115	2044-12-03	YA07366	Nidd 171	2044-12-03	YA15445	Nidd 334	2044-12-03
YA07328	Nidd 116	2044-12-03	YA07367	Nidd 173	2044-12-03	YA15446	Nidd 335	2044-12-03
YA07329	Nidd 117	2044-12-03	YA07368	Nidd 174	2044-12-03	YA15447	Nidd 336	2044-12-03
YA07330	Nidd 118	2044-12-03	YA07369	Nidd 175	2044-12-03	YA15448	Nidd 337	2044-12-03
YA07331	Nidd 119	2044-12-03	YA07375	Nidd 183	2044-12-03	YA15449	Nidd 338	2044-12-03
YA07332	Nidd 120	2044-12-03	YA07436	Nidd 248	2041-12-03	YA15450	Nidd 339	2044-12-03
YA07333	Nidd 121	2044-12-03	YA07437	Nidd 249	2044-12-03	YA15451	Nidd 340	2044-12-03
YA07334	Nidd 122	2044-12-03	YA07438	Nidd 250	2041-12-03	YA15452	Nidd 341	2044-12-03
YA07335	Nidd 130	2044-12-03	YA07439	Nidd 251	2044-12-03	YA15453	Nidd 342	2044-12-03
YA07336	Nidd 131	2044-12-03	YA07440	Nidd 252	2041-12-03	YA15454	Nidd 343	2044-12-03
YA07337	Nidd 132	2044-12-03	YA07441	Nidd 253	2041-12-03	YA15455	Nidd 344	2044-12-03
YA07338	Nidd 133	2044-12-03	YA07445	Nidd 257	2044-12-03	YA15456	Nidd 345	2044-12-03
YA07339	Nidd 134	2044-12-03	YA07446	Nidd 258	2044-12-03	YA15457	Nidd 346	2044-12-03
YA07340	Nidd 135	2044-12-03	YA07447	Nidd 259	2044-12-03	YA43328	Nidd 401	2044-12-03
YA07341	Nidd 136	2044-12-03	YA07448	Nidd 260	2044-12-03	YA43329	Nidd 402	2044-12-03
YA07342	Nidd 138	2044-12-03	YA07449	Nidd 275	2044-12-03	YA43331	Nidd 404	2044-12-03
YA07343	Nidd 140	2044-12-03	YA07450	Nidd 276	2044-12-03	YA43332	Nidd 405	2044-12-03
YA07344	Nidd 142	2044-12-03	YA07451	Nidd 277	2044-12-03	YA43334	Nidd 407	2044-12-03
YA07345	Nidd 144	2044-12-03	YA07452	Nidd 278	2044-12-03	YA43336	Nidd 409	2044-12-03
YA07346	Nidd 145	2044-12-03	YA07453	Nidd 283	2044-12-03	YA43338	Nidd 411	2044-12-03
YA07347	Nidd 146	2044-12-03	YA07454	Nidd 284	2044-12-03	YA43340	Nidd 413	2044-12-03
YA07348	Nidd 147	2044-12-03	YA15428	Nidd 317	2044-12-03	YA43342	Nidd 415	2044-12-03
YA07349	Nidd 148	2044-12-03	YA15429	Nidd 318	2044-12-03	YA43343	Nidd 416	2044-12-03
YA07350	Nidd 149	2044-12-03	YA15430	Nidd 319	2044-12-03	YA43354	Nidd 427	2044-12-03
YA07351	Nidd 150	2044-12-03	YA15431	Nidd 320	2044-12-03	YA43355	Nidd 428	2044-12-03
YA07352	Nidd 151	2044-12-03	YA15432	Nidd 321	2044-12-03	YA62598	Nidd 476	2044-12-03
YA07353	Nidd 152	2044-12-03	YA15433	Nidd 322	2044-12-03	YA62599	Nidd 477	2044-12-03
YA07354	Nidd 153	2044-12-03	YA15434	Nidd 323	2044-12-03	YA62600	Nidd 478	2044-12-03
YA07355	Nidd 154	2044-12-03	YA15435	Nidd 324	2044-12-03	YA62601	Nidd 479	2044-12-03
YA07356	Nidd 155	2044-12-03	YA15436	Nidd 325	2044-12-03	YA62602	Nidd 480	2044-12-03
YA07357	Nidd 156	2044-12-03	YA15437	Nidd 326	2044-12-03	YA62603	Nidd 481	2044-12-03
YA07358	Nidd 157	2044-12-03	YA15438	Nidd 327	2044-12-03	YA62604	Nidd 482	2044-12-03
YA07359	NIdd 158	2044-12-03	YA15439	Nidd 328	2044-12-03	YA62605	Nidd 483	2044-12-03
YA07361	Nidd 161	2044-12-03	YA15440	Nidd 329	2044-12-03	YA62606	Nidd 484	2044-12-03

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Dat
YA62607	Nidd 485	2044-12-03	YA63240	Nidd 527	2044-12-03	YA63294	Nidd 581	2044-12-03
YA62608	Nidd 486	2044-12-03	YA63241	Nidd 528	2044-12-03	YA63295	Nidd 582	2044-12-03
YA62609	Nidd 487	2044-12-03	YA63242	Nidd 529	2044-12-03	YA63296	Nidd 583	2044-12-03
YA62610	Nidd 488	2044-12-03	YA63243	Nidd 530	2044-12-03	YA63297	Nidd 584	2044-12-03
YA62611	Nidd 489	2044-12-03	YA63244	Nidd 531	2044-12-03	YA63298	Nidd 585	2044-12-03
YA62612	Nidd 490	2044-12-03	YA63245	Nidd 532	2044-12-03	YA63299	Nidd 586	2044-12-03
YA62613	Nidd 491	2044-12-03	YA63246	Nidd 533	2044-12-03	YA63300	Nidd 587	2044-12-03
YA62614	Nidd 492	2044-12-03	YA63247	Nidd 534	2044-12-03	YA63301	Nidd 588	2044-12-03
YA62615	Nidd 493	2044-12-03	YA63248	Nidd 535	2044-12-03	YA63302	Nidd 589	2044-12-03
YA62616	Nidd 494	2044-12-03	YA63249	Nidd 536	2044-12-03	YA63303	Nidd 590	2044-12-03
YA62617	Nidd 495	2044-12-03	YA63250	Nidd 537	2044-12-03	YA63304	Nidd 591	2044-12-03
YA62618	Nidd 496	2044-12-03	YA63251	Nidd 538	2044-12-03	YA63305	Nidd 592	2044-12-03
YA62619	Nidd 498	2044-12-03	YA63252	Nidd 539	2044-12-03	YA63306	Nidd 593	2041-12-03
YA62620	Nidd 500	2044-12-03	YA63253	Nidd 540	2044-12-03	YA63307	Nidd 594	2041-12-03
YA62621	Nidd 502	2044-12-03	YA63254	Nidd 541	2044-12-03	YA63308	Nidd 595	2041-12-03
YA62622	Nidd 504	2044-12-03	YA63255	Nidd 542	2044-12-03	YA63309	Nidd 596	2041-12-03
YA62623	Nidd 505	2044-12-03	YA63256	Nidd 543	2044-12-03	YA63310	Nidd 597	2044-12-03
YA62624	Nidd 506	2044-12-03	YA63257	Nidd 544	2044-12-03	YA63311	Nidd 598	2044-12-03
YA62625	Nidd 507	2044-12-03	YA63258	Nidd 545	2044-12-03	YA63312	Nidd 599	2044-12-03
YA62626	Nidd 508	2044-12-03	YA63259	Nidd 546	2044-12-03	YA63313	Nidd 600	2044-12-03
YA62627	Nidd 509	2044-12-03	YA63260	Nidd 547	2044-12-03	YA63314	Nidd 601	2044-12-03
YA62628	Nidd 510	2044-12-03	YA63261	Nidd 548	2044-12-03	YA63315	Nidd 602	2044-12-03
YA62629	Nidd 511	2044-12-03	YA63262	Nidd 549	2044-12-03	YA63316	Nidd 603	2044-12-03
YA62630	Nidd 512	2044-12-03	YA63263	Nidd 550	2044-12-03	YA63317	Nidd 604	2044-12-03
YA62631	Nidd 513	2044-12-03	YA63264	Nidd 551	2044-12-03	YA63318	Nidd 605	2044-12-03
YA62632	Nidd 514	2044-12-03	YA63265	Nidd 552	2044-12-03	YA63319	Nidd 606	2044-12-03
YA62633	Nidd 515	2044-12-03	YA63266	Nidd 553	2044-12-03	YA63320	Nidd 607	2044-12-03
YA62634	Nidd 516	2044-12-03	YA63267	Nidd 554	2044-12-03	YA63321	Nidd 608	2044-12-03
YA62635	Nidd 517	2044-12-03	YA63268	Nidd 555	2044-12-03	YA63322	Nidd 609	2044-12-03
YA62636	Nidd 518	2044-12-03	YA63269	Nidd 556	2044-12-03	YA63323	Nidd 610	2044-12-03
YA62637	Nidd 519	2044-12-03	YA63270	Nidd 557	2044-12-03	YA63324	Nidd 611	2044-12-03
YA62638	Nidd 520	2044-12-03	YA63271	Nidd 558	2044-12-03	YA63325	Nidd 612	2044-12-03
YA63234	Nidd 521	2044-12-03	YA63288	Nidd 575	2044-12-03	YA63326	Nidd 613	2044-12-03
YA63235	Nidd 522	2044-12-03	YA63289	Nidd 576	2044-12-03	YA63327	Nidd 614	2044-12-03
YA63236	Nidd 523	2044-12-03	YA63290	Nidd 577	2044-12-03	YA63328	Nidd 615	2044-12-03
YA63237	Nidd 524	2044-12-03	YA63291	Nidd 578	2044-12-03	YA63329	Nidd 616	2044-12-03
YA63238	Nidd 525	2044-12-03	YA63292	Nidd 579	2044-12-03	YA63330	Nidd 617	2044-12-03
YA63239	Nidd 526	2044-12-03	YA63293	Nidd 580	2044-12-03	YA63331	Nidd 618	2044-12-03

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	s Macpass (Claims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Dat
YA63332	Nidd 619	2044-12-03	YA63636	Nidd 721	2044-12-03	YE43337	NS 7	2036-12-03
YA63333	Nidd 620	2044-12-03	YA63637	Nidd 722	2044-12-03	YE43338	NS 8	2036-12-03
YA63334	Nidd 621	2044-12-03	YA63638	Nidd 723	2044-12-03	YE43339	NS 9	2036-12-03
YA63335	Nidd 622	2041-12-03	YA63639	Nidd 724	2044-12-03	YE43340	NS 10	2036-12-03
YA63336	Nidd 623	2044-12-03	YA63640	Nidd 725	2044-12-03	YE43341	NS 11	2036-12-03
YA63337	Nidd 624	2044-12-03	YA63641	Nidd 726	2044-12-03	YE43342	NS 12	2036-12-03
YA63338	Nidd 625	2044-12-03	YA63642	Nidd 727	2044-12-03	YE43343	NS 13	2036-12-03
YA63339	Nidd 626	2044-12-03	YA63643	Nidd 728	2044-12-03	YE43344	NS 14	2036-12-03
YA63340	Nidd 627	2044-12-03	YA63644	Nidd 729	2041-12-03	YE43345	NS 15	2036-12-03
YA63341	Nidd 628	2044-12-03	YA63645	Nidd 730	2044-12-03	YE43346	NS 16	2036-12-03
YA63342	Nidd 629	2044-12-03	YA63704	Nidd 789	2041-12-03	YE43347	NS 17	2036-12-03
YA63343	Nidd 630	2044-12-03	YA63705	Nidd 790	2044-12-03	YE43348	NS 18	2036-12-03
YA63344	Nidd 631	2044-12-03	YA63706	Nidd 791	2041-12-03	YE43349	NS 19	2036-12-03
YA63345	Nidd 632	2044-12-03	YA63707	Nidd 792	2041-12-03	YE43350	NS 20	2036-12-03
YA63346	Nidd 633	2044-12-03	YA63708	Nidd 793	2041-12-03	YE43351	NS 21	2036-12-03
YA63347	Nidd 634	2044-12-03	YA63709	Nidd 794	2041-12-03	YE43352	NS 22	2036-12-03
YA63614	Nidd 699	2044-12-03	YA63710	Nidd 795	2041-12-03	YE43353	NS 23	2036-12-03
YA63615	Nidd 700	2044-12-03	YA64170	Nidd 803	2044-12-03	YE43354	NS 24	2036-12-0
YA63616	Nidd 701	2044-12-03	YA64171	Nidd 804	2044-12-03	YE43355	NS 25	2036-12-0
YA63617	Nidd 702	2044-12-03	YA64172	Nidd 805	2044-12-03	YE43356	NS 26	2036-12-0
YA63618	Nidd 703	2044-12-03	YA64173	Nidd 806	2044-12-03	YE43357	NS 27	2036-12-0
YA63619	Nidd 704	2044-12-03	YA64174	Nidd 807	2044-12-03	YE43358	NS 28	2036-12-0
YA63620	Nidd 705	2044-12-03	YA64175	Nidd 808	2044-12-03	YE43359	NS 29	2036-12-0
YA63621	Nidd 706	2044-12-03	YA64176	Nidd 809	2044-12-03	YE43360	NS 30	2036-12-0
YA63622	Nidd 707	2044-12-03	YA64177	Nidd 810	2044-12-03	YE43361	NS 31	2036-12-03
YA63623	Nidd 708	2044-12-03	YA64178	Nidd 811	2044-12-03	YE43362	NS 32	2036-12-0
YA63624	Nidd 709	2044-12-03	YA64179	Nidd 812	2044-12-03	YE43363	NS 33	2036-12-03
YA63625	Nidd 710	2044-12-03	YA64180	Nidd 813	2044-12-03	YE43364	NS 34	2036-12-03
YA63626	Nidd 711	2044-12-03	YA64182	Nidd 815	2044-12-03	YE43365	NS 35	2036-12-03
YA63627	Nidd 712	2044-12-03	YA64183	Nidd 816	2044-12-03	YE43366	NS 36	2036-12-03
YA63628	Nidd 713	2044-12-03	YA64184	Nidd 817	2044-12-03	YE43367	NS 37	2036-12-0
YA63629	Nidd 714	2044-12-03	YA64185	Nidd 818	2044-12-03	YE43368	NS 38	2036-12-03
YA63630	Nidd 715	2044-12-03	YE43331	NS 1	2036-12-03	YE39161	NS 39	2036-12-03
YA63631	Nidd 716	2044-12-03	YE43332	NS 2	2036-12-03	YE39162	NS 40	2036-12-03
YA63632	Nidd 717	2044-12-03	YE43333	NS 3	2036-12-03	YE43371	NS 41	2036-12-0
YA63633	Nidd 718	2044-12-03	YE43334	NS 4	2036-12-03	YE43372	NS 42	2036-12-0
YA63634	Nidd 719	2044-12-03	YE43335	NS 5	2036-12-03	YE43373	NS 43	2036-12-0
YA63635	Nidd 720	2044-12-03	YE43336	NS 6	2036-12-03	YE43374	NS 44	2036-12-03

Contiguou	s Macpass (Claims	Contiguou	s Macpass C	laims	Contiguou	s Macpass C	NS 125 2036-12-03 NS 126 2036-12-03 NS 127 2036-12-03		
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim			
YE43375	NS 45	2036-12-03	YE43413	NS 83	2036-12-03	YE43455	NS 125	2036-12-03		
YE43376	NS 46	2036-12-03	YE43414	NS 84	2036-12-03	YE43456	NS 126	2036-12-03		
YE43377	NS 47	2036-12-03	YE43415	NS 85	2036-12-03	YE43457	NS 127	2036-12-03		
YE43378	NS 48	2036-12-03	YE43416	NS 86	2036-12-03	YE43458	NS 128	2036-12-03		
YE43379	NS 49	2036-12-03	YE39167	NS 87	2036-12-03	YE43459	NS 129	2036-12-03		
YE43380	NS 50	2036-12-03	YE39168	NS 88	2036-12-03	YE43460	NS 130	2036-12-03		
YE43381	NS 51	2036-12-03	YE43419	NS 89	2036-12-03	YE43461	NS 131	2036-12-03		
YE43382	NS 52	2036-12-03	YE43420	NS 90	2036-12-03	YE43462	NS 132	2036-12-03		
YE43383	NS 53	2036-12-03	YE43421	NS 91	2036-12-03	YE43463	NS 133	2036-12-03		
YE43384	NS 54	2036-12-03	YE43422	NS 92	2036-12-03	YE43464	NS 134	2036-12-03		
YE39163	NS 55	2036-12-03	YE43423	NS 93	2036-12-03	YE39173	NS 135	2036-12-03		
YE39164	NS 56	2036-12-03	YE43424	NS 94	2036-12-03	YE39174	NS 136	2036-12-03		
YE43387	NS 57	2036-12-03	YE43425	NS 95	2036-12-03	YE43469	NS 139	2036-12-03		
YE43388	NS 58	2036-12-03	YE43426	NS 96	2036-12-03	YE43470	NS 140	2036-12-03		
YE43389	NS 59	2036-12-03	YE43427	NS 97	2036-12-03	YE43471	NS 141	2036-12-03		
YE43390	NS 60	2036-12-03	YE43428	NS 98	2036-12-03	YE43472	NS 142	2036-12-03		
YE43391	NS 61	2036-12-03	YE43429	NS 99	2036-12-03	YE43473	NS 143	2036-12-03		
YE43392	NS 62	2036-12-03	YE43430	NS 100	2036-12-03	YE43474	NS 144	2036-12-03		
YE43393	NS 63	2036-12-03	YE43431	NS 101	2036-12-03	YE43475	NS 145	2036-12-03		
YE43394	NS 64	2036-12-03	YE43432	NS 102	2036-12-03	YE43476	NS 146	2036-12-03		
YE43395	NS 65	2036-12-03	YE39169	NS 103	2036-12-03	YE43477	NS 147	2036-12-03		
YE43396	NS 66	2036-12-03	YE39170	NS 104	2036-12-03	YE43478	NS 148	2036-12-03		
YE43397	NS 67	2036-12-03	YE43437	NS 107	2036-12-03	YE43479	NS 149	2036-12-03		
YE43398	NS 68	2036-12-03	YE43438	NS 108	2036-12-03	YE43480	NS 150	2036-12-03		
YE43399	NS 69	2036-12-03	YE43439	NS 109	2036-12-03	YE39175	NS 151	2036-12-03		
YE43400	NS 70	2036-12-03	YE43440	NS 110	2036-12-03	YE39176	NS 152	2036-12-03		
YE39165	NS 71	2036-12-03	YE43441	NS 111	2036-12-03	YE43483	NS 153	2036-12-03		
YE39166	NS 72	2036-12-03	YE43442	NS 112	2036-12-03	YE43484	NS 154	2036-12-03		
YE43403	NS 73	2036-12-03	YE43443	NS 113	2036-12-03	YE43485	NS 155	2036-12-03		
YE43404	NS 74	2036-12-03	YE43444	NS 114	2036-12-03	YE43486	NS 156	2036-12-03		
YE43405	NS 75	2036-12-03	YE43445	NS 115	2036-12-03	YE43487	NS 157	2036-12-03		
YE43406	NS 76	2036-12-03	YE43446	NS 116	2036-12-03	YE43488	NS 158	2036-12-03		
YE43407	NS 77	2036-12-03	YE43447	NS 117	2036-12-03	YE43489	NS 159	2036-12-03		
YE43408	NS 78	2036-12-03	YE43448	NS 118	2036-12-03	YE43490	NS 160	2036-12-03		
YE43409	NS 79	2036-12-03	YE39171	NS 119	2036-12-03	YE43491	NS 161	2036-12-03		
YE43410	NS 80	2036-12-03	YE39172	NS 120	2036-12-03	YE43492	NS 162	2036-12-03		
YE43411	NS 81	2036-12-03	YE43453	NS 123	2036-12-03	YE43493	NS 163	2036-12-03		
YE43412	NS 82	2036-12-03	YE43454	NS 124	2036-12-03	YE43494	NS 164	2036-12-03		

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	uous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date		
YE43495	NS 165	2036-12-03	YE39183	NS 203	2036-12-03	YE43571	NS 241	2036-12-03		
YE43496	NS 166	2036-12-03	YE39184	NS 204	2036-12-03	YE43572	NS 242	2036-12-03		
YE39177	NS 167	2036-12-03	YE43535	NS 205	2036-12-03	YE39191	NS 243	2036-12-03		
YE39178	NS 168	2036-12-03	YE43536	NS 206	2036-12-03	YE39192	NS 244	2036-12-03		
YE43499	NS 169	2036-12-03	YE43537	NS 207	2036-12-03	YE39194	NS 245	2036-12-03		
YE43500	NS 170	2036-12-03	YE43538	NS 208	2036-12-03	YE43577	NS 247	2036-12-03		
YE43501	NS 171	2036-12-03	YE43539	NS 209	2036-12-03	YE43578	NS 248	2036-12-03		
YE43502	NS 172	2036-12-03	YE43540	NS 210	2036-12-03	YE43579	NS 249	2036-12-03		
YE43503	NS 173	2036-12-03	YE43541	NS 211	2036-12-03	YE43580	NS 250	2036-12-03		
YE43504	NS 174	2036-12-03	YE43542	NS 212	2036-12-03	YE43581	NS 251	2036-12-03		
YE43505	NS 175	2036-12-03	YE39185	NS 213	2036-12-03	YE43582	NS 252	2036-12-03		
YE43506	NS 176	2036-12-03	YE39186	NS 214	2036-12-03	YE43583	NS 253	2036-12-03		
YE43507	NS 177	2036-12-03	YE43545	NS 215	2036-12-03	YE43584	NS 254	2036-12-03		
YE43508	NS 178	2036-12-03	YE43546	NS 216	2036-12-03	YE43585	NS 255	2036-12-03		
YE39179	NS 179	2036-12-03	YE43547	NS 217	2036-12-03	YE43586	NS 256	2036-12-03		
YE39180	NS 180	2036-12-03	YE39187	NS 218	2036-12-03	YE43587	NS 257	2036-12-03		
YE43511	NS 181	2036-12-03	YE43549	NS 219	2036-12-03	YE43588	NS 258	2036-12-03		
YE43512	NS 182	2036-12-03	YE43550	NS 220	2036-12-03	YE43589	NS 259	2036-12-03		
YE43513	NS 183	2036-12-03	YE43551	NS 221	2036-12-03	YE43590	NS 260	2036-12-03		
YE43514	NS 184	2036-12-03	YE43552	NS 222	2036-12-03	YE43591	NS 261	2036-12-03		
YE43515	NS 185	2036-12-03	YE43553	NS 223	2036-12-03	YE43592	NS 262	2036-12-03		
YE43516	NS 186	2036-12-03	YE43554	NS 224	2036-12-03	YE43593	NS 263	2036-12-03		
YE43517	NS 187	2036-12-03	YE43555	NS 225	2036-12-03	YE43594	NS 264	2036-12-03		
YE43518	NS 188	2036-12-03	YE43556	NS 226	2036-12-03	YE39196	NS 265	2036-12-03		
YE43519	NS 189	2036-12-03	YE39189	NS 227	2036-12-03	YE39197	NS 266	2036-12-03		
YE43520	NS 190	2036-12-03	YE39190	NS 228	2036-12-03	YE39207	NS 267	2036-12-03		
YE39181	NS 191	2036-12-03	YE39188	NS 229	2036-12-03	YE39208	NS 268	2036-12-03		
YE39182	NS 192	2036-12-03	YE39193	NS 230	2036-12-03	YE39209	NS 269	2036-12-03		
YE43523	NS 193	2036-12-03	YE43561	NS 231	2036-12-03	YE39210	NS 270	2036-12-03		
YE43524	NS 194	2036-12-03	YE43562	NS 232	2036-12-03	YE39211	NS 271	2036-12-03		
YE43525	NS 195	2036-12-03	YE43563	NS 233	2036-12-03	YE39212	NS 272	2036-12-03		
YE43526	NS 196	2036-12-03	YE43564	NS 234	2036-12-03	YE39213	NS 273	2036-12-03		
YE43527	NS 197	2036-12-03	YE43565	NS 235	2036-12-03	YE39214	NS 274	2036-12-03		
YE43528	NS 198	2036-12-03	YE43566	NS 236	2036-12-03	YE39215	NS 275	2036-12-03		
YE43529	NS 199	2036-12-03	YE43567	NS 237	2036-12-03	YE39216	NS 276	2036-12-03		
YE43530	NS 200	2036-12-03	YE43568	NS 238	2036-12-03	YE39217	NS 277	2036-12-03		
YE43531	NS 201	2036-12-03	YE43569	NS 239	2036-12-03	YE39218	NS 278	2036-12-03		
YE43532	NS 202	2036-12-03	YE43570	NS 240	2036-12-03	YE39219	NS 279	2036-12-03		

Contiguou	Contiguous Macpass Claims			s Macpass C	laims	Contiguou	ous Macpass Claims		
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE39220	NS 280	2036-12-03	YE39258	NS 318	2036-12-03	YE42616	ON 16	2035-12-03	
YE39221	NS 281	2036-12-03	YE39259	NS 319	2036-12-03	YE42617	ON 17	2035-12-03	
YE39222	NS 282	2036-12-03	YE39260	NS 320	2036-12-03	YE42618	ON 18	2035-12-03	
YE39223	NS 283	2036-12-03	YE39261	NS 321	2036-12-03	YE42619	ON 19	2035-12-03	
YE39224	NS 284	2036-12-03	YE39262	NS 322	2036-12-03	YE42620	ON 20	2035-12-03	
YE39225	NS 285	2036-12-03	YE39263	NS 323	2036-12-03	YE42621	ON 21	2035-12-03	
YE39226	NS 286	2036-12-03	YE39264	NS 324	2036-12-03	YE42622	ON 22	2035-12-03	
YE39227	NS 287	2036-12-03	YE39265	NS 325	2036-12-03	YE42623	ON 23	2035-12-03	
YE39228	NS 288	2036-12-03	YE39266	NS 326	2036-12-03	YE42624	ON 24	2035-12-03	
YE39229	NS 289	2036-12-03	YE39267	NS 327	2036-12-03	YE42625	ON 25	2035-12-03	
YE39230	NS 290	2036-12-03	YE39268	NS 328	2036-12-03	YE42626	ON 26	2035-12-03	
YE39231	NS 291	2036-12-03	YE39269	NS 329	2036-12-03	YE42627	ON 27	2035-12-03	
YE39232	NS 292	2036-12-03	YE39270	NS 330	2036-12-03	YE42628	ON 28	2035-12-03	
YE39233	NS 293	2036-12-03	YE39271	NS 331	2036-12-03	YE42629	ON 29	2035-12-03	
YE39234	NS 294	2036-12-03	YE39272	NS 332	2036-12-03	YE42630	ON 30	2035-12-03	
YE39235	NS 295	2036-12-03	YE39273	NS 333	2036-12-03	YE42631	ON 31	2035-12-03	
YE39236	NS 296	2036-12-03	YE39274	NS 334	2036-12-03	YE42632	ON 32	2035-12-03	
YE39237	NS 297	2036-12-03	YE39275	NS 335	2036-12-03	YE42633	ON 33	2035-12-03	
YE39238	NS 298	2036-12-03	YE39276	NS 336	2036-12-03	YE42634	ON 34	2035-12-03	
YE39239	NS 299	2036-12-03	YE39277	NS 337	2036-12-03	YE42635	ON 35	2035-12-03	
YE39240	NS 300	2036-12-03	YE39278	NS 338	2036-12-03	YE42636	ON 36	2035-12-03	
YE39241	NS 301	2036-12-03	YE39279	NS 339	2036-12-03	YE42637	ON 37	2035-12-03	
YE39242	NS 302	2036-12-03	YE39280	NS 340	2036-12-03	YE42638	ON 38	2035-12-03	
YE39243	NS 303	2036-12-03	YE42601	ON 1	2035-12-03	YE42639	ON 39	2035-12-03	
YE39244	NS 304	2036-12-03	YE42602	ON 2	2035-12-03	YE42640	ON 40	2035-12-03	
YE39245	NS 305	2036-12-03	YE42603	ON 3	2035-12-03	YE42641	ON 41	2035-12-03	
YE39246	NS 306	2036-12-03	YE42604	ON 4	2035-12-03	YE42642	ON 42	2035-12-03	
YE39247	NS 307	2036-12-03	YE42605	ON 5	2035-12-03	YE42643	ON 43	2035-12-03	
YE39248	NS 308	2036-12-03	YE42606	ON 6	2035-12-03	YE42644	ON 44	2035-12-03	
YE39249	NS 309	2036-12-03	YE42607	ON 7	2035-12-03	YE42645	ON 45	2035-12-03	
YE39250	NS 310	2036-12-03	YE42608	ON 8	2035-12-03	YE42646	ON 46	2035-12-03	
YE39251	NS 311	2036-12-03	YE42609	ON 9	2035-12-03	YE42647	ON 47	2035-12-03	
YE39252	NS 312	2036-12-03	YE42610	ON 10	2035-12-03	YE42648	ON 48	2035-12-03	
YE39253	NS 313	2036-12-03	YE42611	ON 11	2035-12-03	YE42649	ON 49	2039-12-03	
YE39254	NS 314	2036-12-03	YE42612	ON 12	2035-12-03	YE42650	ON 50	2039-12-03	
YE39255	NS 315	2036-12-03	YE42613	ON 13	2035-12-03	YE42651	ON 51	2035-12-03	
YE39256	NS 316	2036-12-03	YE42614	ON 14	2035-12-03	YE42652	ON 52	2035-12-03	
YE39257	NS 317	2036-12-03	YE42615	ON 15	2035-12-03	YE42653	ON 53	2035-12-03	

Contiguous Macpass Claims			Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YE42654	ON 54	2035-12-03	YE42692	ON 92	2039-12-03	YE42730	ON 130	2035-12-03
YE42655	ON 55	2035-12-03	YE42693	ON 93	2039-12-03	YE42731	ON 131	2035-12-03
YE42656	ON 56	2035-12-03	YE42694	ON 94	2039-12-03	YE42732	ON 132	2035-12-03
YE42657	ON 57	2035-12-03	YE42695	ON 95	2035-12-03	YE42733	ON 133	2039-12-03
YE42658	ON 58	2035-12-03	YE42696	ON 96	2035-12-03	YE42734	ON 134	2039-12-03
YE42659	ON 59	2035-12-03	YE42697	ON 97	2035-12-03	YE42735	ON 135	2039-12-03
YE42660	ON 60	2035-12-03	YE42698	ON 98	2035-12-03	YE42736	ON 136	2039-12-03
YE42661	ON 61	2035-12-03	YE42699	ON 99	2035-12-03	YE42737	ON 137	2039-12-03
YE42662	ON 62	2035-12-03	YE42700	ON 100	2035-12-03	YE42738	ON 138	2039-12-03
YE42663	ON 63	2035-12-03	YE42701	ON 101	2035-12-03	YE42739	ON 139	2039-12-03
YE42664	ON 64	2035-12-03	YE42702	ON 102	2035-12-03	YE42740	ON 140	2039-12-03
YE42665	ON 65	2035-12-03	YE42703	ON 103	2035-12-03	YE42741	ON 141	2035-12-03
YE42666	ON 66	2035-12-03	YE42704	ON 104	2035-12-03	YE42742	ON 142	2035-12-03
YE42667	ON 67	2039-12-03	YE42705	ON 105	2035-12-03	YE42743	ON 143	2035-12-03
YE42668	ON 68	2039-12-03	YE42706	ON 106	2035-12-03	YE42744	ON 144	2035-12-03
YE42669	ON 69	2039-12-03	YE42707	ON 107	2035-12-03	YE42745	ON 145	2035-12-03
YE42670	ON 70	2039-12-03	YE42708	ON 108	2035-12-03	YE42746	ON 146	2035-12-03
YE42671	ON 71	2039-12-03	YE42709	ON 109	2035-12-03	YE42747	ON 147	2035-12-03
YE42672	ON 72	2039-12-03	YE42710	ON 110	2035-12-03	YE42748	ON 148	2035-12-03
YE42673	ON 73	2035-12-03	YE42711	ON 111	2039-12-03	YE42749	ON 149	2035-12-03
YE42674	ON 74	2035-12-03	YE42712	ON 112	2039-12-03	YE42750	ON 150	2035-12-03
YE42675	ON 75	2035-12-03	YE42713	ON 113	2039-12-03	YE42751	ON 151	2035-12-03
YE42676	ON 76	2035-12-03	YE42714	ON 114	2039-12-03	YE42752	ON 152	2035-12-03
YE42677	ON 77	2035-12-03	YE42715	ON 115	2039-12-03	YE42753	ON 153	2035-12-03
YE42678	ON 78	2035-12-03	YE42716	ON 116	2039-12-03	YE42754	ON 154	2035-12-03
YE42679	ON 79	2035-12-03	YE42717	ON 117	2039-12-03	YE42755	ON 155	2039-12-03
YE42680	ON 80	2035-12-03	YE42718	ON 118	2039-12-03	YE42756	ON 156	2039-12-03
YE42681	ON 81	2035-12-03	YE42719	ON 119	2035-12-03	YE42757	ON 157	2039-12-03
YE42682	ON 82	2035-12-03	YE42720	ON 120	2035-12-03	YE42758	ON 158	2039-12-03
YE42683	ON 83	2035-12-03	YE42721	ON 121	2035-12-03	YE42759	ON 159	2039-12-03
YE42684	ON 84	2035-12-03	YE42722	ON 122	2035-12-03	YE42760	ON 160	2039-12-03
YE42685	ON 85	2035-12-03	YE42723	ON 123	2035-12-03	YE42761	ON 161	2039-12-03
YE42686	ON 86	2035-12-03	YE42724	ON 124	2035-12-03	YE42762	ON 162	2039-12-03
YE42687	ON 87	2035-12-03	YE42725	ON 125	2035-12-03	YE42763	ON 163	2039-12-03
YE42688	ON 88	2035-12-03	YE42726	ON 126	2035-12-03	YE42764	ON 164	2039-12-03
YE42689	ON 89	2039-12-03	YE42727	ON 127	2035-12-03	YE42765	ON 165	2039-12-03
YE42690	ON 90	2039-12-03	YE42728	ON 128	2035-12-03	YE42766	ON 166	2039-12-03
YE42691	ON 91	2039-12-03	YE42729	ON 129	2035-12-03	YE42767	ON 167	2035-12-03

Contiguou	Contiguous Macpass Claims			s Macpass C	laims	Contiguou	s Macpass Claims		
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE42768	ON 168	2035-12-03	YE42806	ON 206	2035-12-03	YE42844	ON 244	2039-12-03	
YE42769	ON 169	2035-12-03	YE42807	ON 207	2035-12-03	YE42845	ON 245	2039-12-03	
YE42770	ON 170	2035-12-03	YE42808	ON 208	2035-12-03	YE42846	ON 246	2039-12-03	
YE42771	ON 171	2035-12-03	YE42809	ON 209	2039-12-03	YE42847	ON 247	2039-12-03	
YE42772	ON 172	2035-12-03	YE42810	ON 210	2039-12-03	YE42848	ON 248	2039-12-03	
YE42773	ON 173	2035-12-03	YE42811	ON 211	2039-12-03	YE42849	ON 249	2039-12-03	
YE42774	ON 174	2035-12-03	YE42812	ON 212	2039-12-03	YE42850	ON 250	2039-12-03	
YE42775	ON 175	2035-12-03	YE42813	ON 213	2039-12-03	YE42851	ON 251	2039-12-03	
YE42776	ON 176	2035-12-03	YE42814	ON 214	2039-12-03	YE42852	ON 252	2039-12-03	
YE42777	ON 177	2035-12-03	YE42815	ON 215	2039-12-03	YE42853	ON 253	2039-12-03	
YE42778	ON 178	2035-12-03	YE42816	ON 216	2039-12-03	YE42854	ON 254	2039-12-03	
YE42779	ON 179	2035-12-03	YE42817	ON 217	2039-12-03	YE42855	ON 255	2039-12-03	
YE42780	ON 180	2035-12-03	YE42818	ON 218	2039-12-03	YE42856	ON 256	2039-12-03	
YE42781	ON 181	2039-12-03	YE42819	ON 219	2039-12-03	YE42857	ON 257	2039-12-03	
YE42782	ON 182	2039-12-03	YE42820	ON 220	2039-12-03	YE42858	ON 258	2039-12-03	
YE42783	ON 183	2039-12-03	YE42821	ON 221	2039-12-03	YE42859	ON 259	2039-12-03	
YE42784	ON 184	2039-12-03	YE42822	ON 222	2039-12-03	YE42860	ON 260	2039-12-03	
YE42785	ON 185	2039-12-03	YE42823	ON 223	2039-12-03	YE42861	ON 261	2039-12-03	
YE42786	ON 186	2039-12-03	YE42824	ON 224	2039-12-03	YE42862	ON 262	2039-12-03	
YE42787	ON 187	2039-12-03	YE42825	ON 225	2039-12-03	YE42863	ON 263	2035-12-03	
YE42788	ON 188	2039-12-03	YE42826	ON 226	2039-12-03	YE42864	ON 264	2035-12-03	
YE42789	ON 189	2039-12-03	YE42827	ON 227	2039-12-03	YE42865	ON 265	2035-12-03	
YE42790	ON 190	2039-12-03	YE42828	ON 228	2039-12-03	YE42866	ON 266	2035-12-03	
YE42791	ON 191	2039-12-03	YE42829	ON 229	2035-12-03	YE42867	ON 267	2035-12-03	
YE42792	ON 192	2039-12-03	YE42830	ON 230	2035-12-03	YE42868	ON 268	2035-12-03	
YE42793	ON 193	2039-12-03	YE42831	ON 231	2035-12-03	YE42869	ON 269	2035-12-03	
YE42794	ON 194	2039-12-03	YE42832	ON 232	2035-12-03	YE42870	ON 270	2035-12-03	
YE42795	ON 195	2039-12-03	YE42833	ON 233	2035-12-03	YE42871	ON 271	2035-12-03	
YE42796	ON 196	2039-12-03	YE42834	ON 234	2035-12-03	YE42872	ON 272	2035-12-03	
YE42797	ON 197	2035-12-03	YE42835	ON 235	2035-12-03	YE42873	ON 273	2039-12-03	
YE42798	ON 198	2035-12-03	YE42836	ON 236	2035-12-03	YE42874	ON 274	2039-12-03	
YE42799	ON 199	2035-12-03	YE42837	ON 237	2035-12-03	YE42875	ON 275	2039-12-03	
YE42800	ON 200	2035-12-03	YE42838	ON 238	2035-12-03	YE42876	ON 276	2039-12-03	
YE42801	ON 201	2035-12-03	YE42839	ON 239	2035-12-03	YE42877	ON 277	2039-12-03	
YE42802	ON 202	2035-12-03	YE42840	ON 240	2035-12-03	YE42878	ON 278	2039-12-03	
YE42803	ON 203	2035-12-03	YE42841	ON 241	2039-12-03	YE42879	ON 279	2039-12-03	
YE42804	ON 204	2035-12-03	YE42842	ON 242	2039-12-03	YE42880	ON 280	2039-12-03	
YE42805	ON 205	2035-12-03	YE42843	ON 243	2039-12-03	YE42881	ON 281	2039-12-03	

Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims	Contiguou	s Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YE42882	ON 282	2039-12-03	YE42920	ON 320	2039-12-03	YE42958	ON 358	2039-12-03
YE42883	ON 283	2039-12-03	YE42921	ON 321	2039-12-03	YE42959	ON 359	2039-12-03
YE42884	ON 284	2039-12-03	YE42922	ON 322	2039-12-03	YE42960	ON 360	2039-12-03
YE42885	ON 285	2039-12-03	YE42923	ON 323	2039-12-03	YE42961	ON 361	2035-12-03
YE42886	ON 286	2039-12-03	YE42924	ON 324	2039-12-03	YE42962	ON 362	2035-12-03
YE42887	ON 287	2039-12-03	YE42925	ON 325	2039-12-03	YE42963	ON 363	2035-12-03
YE42888	ON 288	2039-12-03	YE42926	ON 326	2039-12-03	YE42964	ON 364	2035-12-03
YE42889	ON 289	2039-12-03	YE42927	ON 327	2035-12-03	YE42965	ON 365	2035-12-03
YE42890	ON 290	2039-12-03	YE42928	ON 328	2035-12-03	YE42966	ON 366	2035-12-03
YE42891	ON 291	2039-12-03	YE42929	ON 329	2035-12-03	YE42967	ON 367	2035-12-03
YE42892	ON 292	2039-12-03	YE42930	ON 330	2035-12-03	YE42968	ON 368	2035-12-03
YE42893	ON 293	2039-12-03	YE42931	ON 331	2035-12-03	YE42969	ON 369	2039-12-03
YE42894	ON 294	2039-12-03	YE42932	ON 332	2035-12-03	YE42970	ON 370	2039-12-03
YE42895	ON 295	2035-12-03	YE42933	ON 333	2035-12-03	YE42971	ON 371	2039-12-03
YE42896	ON 296	2035-12-03	YE42934	ON 334	2035-12-03	YE42972	ON 372	2039-12-03
YE42897	ON 297	2035-12-03	YE42935	ON 335	2035-12-03	YE42973	ON 373	2039-12-03
YE42898	ON 298	2035-12-03	YE42936	ON 336	2035-12-03	YE42974	ON 374	2039-12-03
YE42899	ON 299	2035-12-03	YE42937	ON 337	2039-12-03	YE42975	ON 375	2039-12-03
YE42900	ON 300	2035-12-03	YE42938	ON 338	2039-12-03	YE42976	ON 376	2039-12-03
YE42901	ON 301	2035-12-03	YE42939	ON 339	2039-12-03	YE42977	ON 377	2039-12-03
YE42902	ON 302	2035-12-03	YE42940	ON 340	2039-12-03	YE42978	ON 378	2039-12-03
YE42903	ON 303	2035-12-03	YE42941	ON 341	2039-12-03	YE42979	ON 379	2039-12-03
YE42904	ON 304	2035-12-03	YE42942	ON 342	2039-12-03	YE42980	ON 380	2039-12-03
YE42905	ON 305	2039-12-03	YE42943	ON 343	2039-12-03	YE42981	ON 381	2039-12-03
YE42906	ON 306	2039-12-03	YE42944	ON 344	2039-12-03	YE42982	ON 382	2039-12-03
YE42907	ON 307	2039-12-03	YE42945	ON 345	2039-12-03	YE42983	ON 383	2039-12-03
YE42908	ON 308	2039-12-03	YE42946	ON 346	2039-12-03	YE42984	ON 384	2039-12-03
YE42909	ON 309	2039-12-03	YE42947	ON 347	2039-12-03	YE42985	ON 385	2039-12-03
YE42910	ON 310	2039-12-03	YE42948	ON 348	2039-12-03	YE42986	ON 386	2039-12-03
YE42911	ON 311	2039-12-03	YE42949	ON 349	2039-12-03	YE42987	ON 387	2039-12-03
YE42912	ON 312	2039-12-03	YE42950	ON 350	2039-12-03	YE42988	ON 388	2039-12-03
YE42913	ON 313	2039-12-03	YE42951	ON 351	2039-12-03	YE42989	ON 389	2039-12-03
YE42914	ON 314	2039-12-03	YE42952	ON 352	2039-12-03	YE42990	ON 390	2039-12-03
YE42915	ON 315	2039-12-03	YE42953	ON 353	2039-12-03	YE42991	ON 391	2039-12-03
YE42916	ON 316	2039-12-03	YE42954	ON 354	2039-12-03	YE42992	ON 392	2039-12-03
YE42917	ON 317	2039-12-03	YE42955	ON 355	2039-12-03	YE42993	ON 393	2035-12-03
YE42918	ON 318	2039-12-03	YE42956	ON 356	2039-12-03	YE42994	ON 394	2035-12-03
YE42919	ON 319	2039-12-03	YE42957	ON 357	2039-12-03	YE42995	ON 395	2035-12-03

Contiguou	Contiguous Macpass Claims			s Macpass C	laims	Contiguou	s Macpass (Dro 2 2037-12-03 Dro 3 2037-12-03		
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date		
YE42996	ON 396	2035-12-03	YE43294	ON 434	2035-12-03	YD31352	Oro 2			
YE42997	ON 397	2035-12-03	YE43295	ON 435	2039-12-03	YD31353	Oro 3	2037-12-03		
YE42998	ON 398	2035-12-03	YE43296	ON 436	2039-12-03	YD31354	Oro 4	2037-12-03		
YE42999	ON 399	2035-12-03	YE43297	ON 437	2039-12-03	YD31355	Oro 5	2037-12-03		
YE43000	ON 400	2035-12-03	YE43298	ON 438	2039-12-03	YD31356	Oro 6	2037-12-03		
YE43261	ON 401	2039-12-03	YE43299	ON 439	2039-12-03	YD31357	Oro 7	2037-12-03		
YE43262	ON 402	2039-12-03	YE43300	ON 440	2039-12-03	YD31358	Oro 8	2037-12-03		
YE43263	ON 403	2039-12-03	YE43301	ON 441	2039-12-03	YD31359	Oro 9	2037-12-03		
YE43264	ON 404	2039-12-03	YE43302	ON 442	2039-12-03	YD31360	Oro 10	2037-12-03		
YE43265	ON 405	2039-12-03	YE43303	ON 443	2039-12-03	YD31361	Oro 11	2037-12-03		
YE43266	ON 406	2039-12-03	YE43304	ON 444	2039-12-03	YD31362	Oro 12	2037-12-03		
YE43267	ON 407	2039-12-03	YE43305	ON 445	2039-12-03	YD31363	Oro 13	2037-12-03		
YE43268	ON 408	2039-12-03	YE43306	ON 446	2039-12-03	YD31364	Oro 14	2037-12-03		
YE43269	ON 409	2039-12-03	YE43307	ON 447	2039-12-03	YD31365	Oro 15	2037-12-03		
YE43270	ON 410	2039-12-03	YE43308	ON 448	2039-12-03	YD31366	Oro 16	2037-12-03		
YE43271	ON 411	2039-12-03	YE43309	ON 449	2039-12-03	YD31367	Oro 17	2037-12-03		
YE43272	ON 412	2039-12-03	YE43310	ON 450	2039-12-03	YD31368	Oro 18	2037-12-03		
YE43273	ON 413	2039-12-03	YE43311	ON 451	2039-12-03	YD31369	Oro 19	2037-12-03		
YE43274	ON 414	2039-12-03	YE43312	ON 452	2039-12-03	YD31370	Oro 20	2037-12-03		
YE43275	ON 415	2039-12-03	YE43313	ON 453	2039-12-03	YD31371	Oro 21	2037-12-03		
YE43276	ON 416	2039-12-03	YE43314	ON 454	2039-12-03	YD31372	Oro 22	2037-12-03		
YE43277	ON 417	2039-12-03	YE43315	ON 455	2039-12-03	YD31373	Oro 23	2037-12-03		
YE43278	ON 418	2039-12-03	YE43316	ON 456	2039-12-03	YD31374	Oro 24	2037-12-03		
YE43279	ON 419	2039-12-03	YE43317	ON 457	2039-12-03	YD31375	Oro 25	2037-12-03		
YE43280	ON 420	2039-12-03	YE43318	ON 458	2039-12-03	YD31376	Oro 26	2037-12-03		
YE43281	ON 421	2039-12-03	YE43319	ON 459	2039-12-03	YD31377	Oro 27	2037-12-03		
YE43282	ON 422	2039-12-03	YE43320	ON 460	2039-12-03	YD31378	Oro 28	2037-12-03		
YE43283	ON 423	2039-12-03	YE43321	ON 461	2039-12-03	YD31379	Oro 29	2037-12-03		
YE43284	ON 424	2039-12-03	YE43322	ON 462	2039-12-03	YD31380	Oro 30	2037-12-03		
YE43285	ON 425	2039-12-03	YE43323	ON 463	2035-12-03	YD31381	Oro 31	2037-12-03		
YE43286	ON 426	2039-12-03	YE43324	ON 464	2035-12-03	YD31382	Oro 32	2037-12-03		
YE43287	ON 427	2035-12-03	YE43325	ON 465	2035-12-03	YD31383	Oro 33	2037-12-03		
YE43288	ON 428	2035-12-03	YE43326	ON 466	2035-12-03	YD31384	Oro 34	2037-12-03		
YE43289	ON 429	2035-12-03	YE43327	ON 467	2035-12-03	YD31385	Oro 35	2037-12-03		
YE43290	ON 430	2035-12-03	YE43328	ON 468	2035-12-03	YD31386	Oro 36	2037-12-03		
YE43291	ON 431	2035-12-03	YE43329	ON 469	2035-12-03	YD31387	Oro 37	2037-12-03		
YE43292	ON 432	2035-12-03	YE43330	ON 470	2035-12-03	YD31388	Oro 38	2037-12-03		
YE43293	ON 433	2035-12-03	YD31351	Oro 1	2037-12-03	YD31389	Oro 39	2037-12-03		

Contiguous	s Macpass (Claims	Contiguous	Macpass C	laims	Contiguous	Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD31390	Oro 40	2037-12-03	YD104932	Oro 78	2039-12-03	YD104970	Oro 116	2039-12-03
YD31391	Oro 41	2037-12-03	YD104933	Oro 79	2039-12-03	YD104971	Oro 117	2039-12-03
YD31392	Oro 42	2037-12-03	YD104934	Oro 80	2039-12-03	YD104972	Oro 118	2039-12-03
YD31393	Oro 43	2037-12-03	YD104935	Oro 81	2039-12-03	YD104973	Oro 119	2039-12-03
YD31394	Oro 44	2037-12-03	YD104936	Oro 82	2039-12-03	YD104974	Oro 120	2039-12-03
YD31395	Oro 45	2037-12-03	YD104937	Oro 83	2039-12-03	YD104975	Oro 121	2039-12-03
YD31396	Oro 46	2037-12-03	YD104938	Oro 84	2039-12-03	YD104976	Oro 122	2039-12-03
YD31397	Oro 47	2037-12-03	YD104939	Oro 85	2039-12-03	YD104977	Oro 123	2039-12-03
YD31398	Oro 48	2037-12-03	YD104940	Oro 86	2039-12-03	YD104978	Oro 124	2039-12-03
YD104903	Oro 49	2039-12-03	YD104941	Oro 87	2039-12-03	YD104979	Oro 125	2039-12-03
YD104904	Oro 50	2039-12-03	YD104942	Oro 88	2039-12-03	YD104980	Oro 126	2039-12-03
YD104905	Oro 51	2039-12-03	YD104943	Oro 89	2039-12-03	YD104981	Oro 127	2039-12-03
YD104906	Oro 52	2039-12-03	YD104944	Oro 90	2039-12-03	YD104982	Oro 128	2039-12-03
YD104907	Oro 53	2039-12-03	YD104945	Oro 91	2039-12-03	YD104983	Oro 129	2039-12-03
YD104908	Oro 54	2039-12-03	YD104946	Oro 92	2039-12-03	YD104984	Oro 130	2039-12-03
YD104909	Oro 55	2039-12-03	YD104947	Oro 93	2039-12-03	YD104985	Oro 131	2039-12-03
YD104910	Oro 56	2039-12-03	YD104948	Oro 94	2039-12-03	YD104986	Oro 132	2039-12-03
YD104911	Oro 57	2039-12-03	YD104949	Oro 95	2039-12-03	YD104987	Oro 133	2039-12-03
YD104912	Oro 58	2039-12-03	YD104950	Oro 96	2039-12-03	YD104988	Oro 134	2039-12-03
YD104913	Oro 59	2039-12-03	YD104951	Oro 97	2039-12-03	YD104989	Oro 135	2039-12-03
YD104914	Oro 60	2039-12-03	YD104952	Oro 98	2039-12-03	YD104990	Oro 136	2039-12-03
YD104915	Oro 61	2039-12-03	YD104953	Oro 99	2039-12-03	YD104991	Oro 137	2039-12-03
YD104916	Oro 62	2039-12-03	YD104954	Oro 100	2039-12-03	YD104992	Oro 138	2039-12-03
YD104917	Oro 63	2039-12-03	YD104955	Oro 101	2039-12-03	YD104993	Oro 139	2039-12-03
YD104918	Oro 64	2039-12-03	YD104956	Oro 102	2039-12-03	YD104994	Oro 140	2039-12-03
YD104919	Oro 65	2039-12-03	YD104957	Oro 103	2039-12-03	YD104995	Oro 141	2039-12-03
YD104920	Oro 66	2039-12-03	YD104958	Oro 104	2039-12-03	YD104996	Oro 142	2039-12-03
YD104921	Oro 67	2039-12-03	YD104959	Oro 105	2039-12-03	YD104997	Oro 143	2039-12-03
YD104922	Oro 68	2039-12-03	YD104960	Oro 106	2039-12-03	YD104998	Oro 144	2039-12-03
YD104923	Oro 69	2039-12-03	YD104961	Oro 107	2039-12-03	YD104999	Oro 145	2039-12-03
YD104924	Oro 70	2039-12-03	YD104962	Oro 108	2039-12-03	YD105000	Oro 146	2039-12-03
YD104925	Oro 71	2039-12-03	YD104963	Oro 109	2039-12-03	YD105001	Oro 147	2039-12-03
YD104926	Oro 72	2039-12-03	YD104964	Oro 110	2039-12-03	YD105002	Oro 148	2039-12-03
YD104927	Oro 73	2039-12-03	YD104965	Oro 111	2039-12-03	YD105003	Oro 149	2039-12-03
YD104928	Oro 74	2039-12-03	YD104966	Oro 112	2039-12-03	YD105004	Oro 150	2039-12-03
YD104929	Oro 75	2039-12-03	YD104967	Oro 113	2039-12-03	YD105005	Oro 151	2039-12-03
YD104930	Oro 76	2039-12-03	YD104968	Oro 114	2039-12-03	YD105006	Oro 152	2039-12-03
YD104931	Oro 77	2039-12-03	YD104969	Oro 115	2039-12-03	YD105007	Oro 153	2039-12-03

Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	Contiguous	s Macpass C	laims
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD105008	Oro 154	2039-12-03	YD105046	Oro 192	2039-12-03	YD105084	Oro 230	2039-12-03
YD105009	Oro 155	2039-12-03	YD105047	Oro 193	2039-12-03	YD105085	Oro 231	2039-12-03
YD105010	Oro 156	2039-12-03	YD105048	Oro 194	2039-12-03	YD105086	Oro 232	2039-12-03
YD105011	Oro 157	2039-12-03	YD105049	Oro 195	2039-12-03	YD105087	Oro 233	2039-12-03
YD105012	Oro 158	2039-12-03	YD105050	Oro 196	2039-12-03	YD105088	Oro 234	2039-12-03
YD105013	Oro 159	2039-12-03	YD105051	Oro 197	2039-12-03	YD105089	Oro 235	2039-12-03
YD105014	Oro 160	2039-12-03	YD105052	Oro 198	2039-12-03	YD105090	Oro 236	2039-12-03
YD105015	Oro 161	2039-12-03	YD105053	Oro 199	2039-12-03	YD105091	Oro 237	2039-12-03
YD105016	Oro 162	2039-12-03	YD105054	Oro 200	2039-12-03	YD105092	Oro 238	2039-12-03
YD105017	Oro 163	2039-12-03	YD105055	Oro 201	2039-12-03	YD105093	Oro 239	2039-12-03
YD105018	Oro 164	2039-12-03	YD105056	Oro 202	2039-12-03	YD105094	Oro 240	2039-12-03
YD105019	Oro 165	2039-12-03	YD105057	Oro 203	2039-12-03	YD105095	Oro 241	2039-12-03
YD105020	Oro 166	2039-12-03	YD105058	Oro 204	2039-12-03	YD105096	Oro 242	2039-12-03
YD105021	Oro 167	2039-12-03	YD105059	Oro 205	2039-12-03	YD105097	Oro 243	2039-12-03
YD105022	Oro 168	2039-12-03	YD105060	Oro 206	2039-12-03	YD105098	Oro 244	2039-12-03
YD105023	Oro 169	2039-12-03	YD105061	Oro 207	2039-12-03	YD105099	Oro 245	2039-12-03
YD105024	Oro 170	2039-12-03	YD105062	Oro 208	2039-12-03	YD105100	Oro 246	2039-12-03
YD105025	Oro 171	2039-12-03	YD105063	Oro 209	2039-12-03	YD105101	Oro 247	2039-12-03
YD105026	Oro 172	2039-12-03	YD105064	Oro 210	2039-12-03	YD105102	Oro 248	2039-12-03
YD105027	Oro 173	2039-12-03	YD105065	Oro 211	2039-12-03	YD105103	Oro 249	2039-12-03
YD105028	Oro 174	2039-12-03	YD105066	Oro 212	2039-12-03	YD105104	Oro 250	2039-12-03
YD105029	Oro 175	2039-12-03	YD105067	Oro 213	2039-12-03	YD105105	Oro 251	2039-12-03
YD105030	Oro 176	2039-12-03	YD105068	Oro 214	2039-12-03	YD105106	Oro 252	2039-12-03
YD105031	Oro 177	2039-12-03	YD105069	Oro 215	2039-12-03	YD105107	Oro 253	2039-12-03
YD105032	Oro 178	2039-12-03	YD105070	Oro 216	2039-12-03	YD105108	Oro 254	2039-12-03
YD105033	Oro 179	2039-12-03	YD105071	Oro 217	2039-12-03	YD105109	Oro 255	2039-12-03
YD105034	Oro 180	2039-12-03	YD105072	Oro 218	2039-12-03	YD105110	Oro 256	2039-12-03
YD105035	Oro 181	2039-12-03	YD105073	Oro 219	2039-12-03	YD105111	Oro 257	2039-12-03
YD105036	Oro 182	2039-12-03	YD105074	Oro 220	2039-12-03	YD105112	Oro 258	2039-12-03
YD105037	Oro 183	2039-12-03	YD105075	Oro 221	2039-12-03	YD105113	Oro 259	2039-12-03
YD105038	Oro 184	2039-12-03	YD105076	Oro 222	2039-12-03	YD105114	Oro 260	2039-12-03
YD105039	Oro 185	2039-12-03	YD105077	Oro 223	2039-12-03	YD105115	Oro 261	2039-12-03
YD105040	Oro 186	2039-12-03	YD105078	Oro 224	2039-12-03	YD105116	Oro 262	2039-12-03
YD105041	Oro 187	2039-12-03	YD105079	Oro 225	2039-12-03	YD105117	Oro 263	2039-12-03
YD105042	Oro 188	2039-12-03	YD105080	Oro 226	2039-12-03	YD105118	Oro 264	2039-12-03
YD105043	Oro 189	2039-12-03	YD105081	Oro 227	2039-12-03	YD105119	Oro 265	2039-12-03
YD105044	Oro 190	2039-12-03	YD105082	Oro 228	2039-12-03	YD105120	Oro 266	2039-12-03
YD105045	Oro 191	2039-12-03	YD105083	Oro 229	2039-12-03	YD105121	Oro 267	2039-12-03

Contiguous Macpass Claims		Contiguous	Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YD105122	Oro 268	2039-12-03	YD105160	Oro 306	2039-12-03	YE42014	OS 14	2043-12-03	
YD105123	Oro 269	2039-12-03	YD105161	Oro 307	2039-12-03	YE42015	OS 15	2034-12-03	
YD105124	Oro 270	2039-12-03	YD105162	Oro 308	2039-12-03	YE42016	OS 16	2034-12-03	
YD105125	Oro 271	2039-12-03	YD105163	Oro 309	2039-12-03	YE42017	OS 17	2034-12-03	
YD105126	Oro 272	2039-12-03	YD105164	Oro 310	2039-12-03	YE42018	OS 18	2034-12-03	
YD105127	Oro 273	2039-12-03	YD105165	Oro 311	2039-12-03	YE42019	OS 19	2038-12-03	
YD105128	Oro 274	2039-12-03	YD105166	Oro 312	2039-12-03	YE42020	OS 20	2038-12-03	
YD105129	Oro 275	2039-12-03	YD105167	Oro 313	2039-12-03	YE42021	OS 21	2038-12-03	
YD105130	Oro 276	2039-12-03	YD105168	Oro 314	2039-12-03	YE42022	OS 22	2038-12-03	
YD105131	Oro 277	2039-12-03	YD105169	Oro 315	2039-12-03	YE42023	OS 23	2038-12-03	
YD105132	Oro 278	2039-12-03	YD105170	Oro 316	2039-12-03	YE42024	OS 24	2038-12-03	
YD105133	Oro 279	2039-12-03	YD105171	Oro 317	2039-12-03	YE42025	OS 25	2038-12-03	
YD105134	Oro 280	2039-12-03	YD105172	Oro 318	2039-12-03	YE42026	OS 26	2038-12-03	
YD105135	Oro 281	2039-12-03	YD105441	Oro 319	2039-12-03	YE42027	OS 27	2038-12-03	
YD105136	Oro 282	2039-12-03	YD105442	Oro 320	2039-12-03	YE42028	OS 28	2038-12-03	
YD105137	Oro 283	2039-12-03	YD105443	Oro 321	2039-12-03	YE42029	OS 29	2038-12-03	
YD105138	Oro 284	2039-12-03	YD105444	Oro 322	2039-12-03	YE42030	OS 30	2038-12-03	
YD105139	Oro 285	2039-12-03	YD105445	Oro 323	2039-12-03	YE42031	OS 31	2038-12-03	
YD105140	Oro 286	2039-12-03	YD105446	Oro 324	2039-12-03	YE42032	OS 32	2038-12-03	
YD105141	Oro 287	2039-12-03	YD105447	Oro 325	2039-12-03	YE42033	OS 33	2043-12-03	
YD105142	Oro 288	2039-12-03	YD105448	Oro 326	2039-12-03	YE42034	OS 34	2043-12-03	
YD105143	Oro 289	2039-12-03	YD105449	Oro 327	2039-12-03	YE42035	OS 35	2043-12-03	
YD105144	Oro 290	2039-12-03	YD105450	Oro 328	2039-12-03	YE42036	OS 36	2043-12-03	
YD105145	Oro 291	2039-12-03	YD105451	Oro 329	2039-12-03	YE42037	OS 37	2043-12-03	
YD105146	Oro 292	2039-12-03	YD105452	Oro 330	2039-12-03	YE42038	OS 38	2043-12-03	
YD105147	Oro 293	2039-12-03	YE42001	OS 1	2043-12-03	YE42039	OS 39	2043-12-03	
YD105148	Oro 294	2039-12-03	YE42002	OS 2	2043-12-03	YE42040	OS 40	2043-12-03	
YD105149	Oro 295	2039-12-03	YE42003	OS 3	2043-12-03	YE42041	OS 41	2043-12-03	
YD105150	Oro 296	2039-12-03	YE42004	OS 4	2043-12-03	YE42042	OS 42	2043-12-03	
YD105151	Oro 297	2039-12-03	YE42005	OS 5	2043-12-03	YE42043	OS 43	2043-12-03	
YD105152	Oro 298	2039-12-03	YE42006	OS 6	2043-12-03	YE42044	OS 44	2043-12-03	
YD105153	Oro 299	2039-12-03	YE42007	OS 7	2043-12-03	YE42045	OS 45	2043-12-03	
YD105154	Oro 300	2039-12-03	YE42008	OS 8	2043-12-03	YE42046	OS 46	2043-12-03	
YD105155	Oro 301	2039-12-03	YE42009	OS 9	2043-12-03	YE42047	OS 47	2034-12-03	
YD105156	Oro 302	2039-12-03	YE42010	OS 10	2043-12-03	YE42048	OS 48	2034-12-03	
YD105157	Oro 303	2039-12-03	YE42011	OS 11	2043-12-03	YE42049	OS 49	2034-12-03	
YD105158	Oro 304	2039-12-03	YE42012	OS 12	2043-12-03	YE42050	OS 50	2034-12-03	
YD105159	Oro 305	2039-12-03	YE42013	OS 13	2043-12-03	YE42051	OS 51	2038-12-03	

Contiguous Macpass Claims		Contiguou	Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE42052	OS 52	2038-12-03	YE42090	OS 90	2038-12-03	YE42128	OS 128	2038-12-03	
YE42053	OS 53	2038-12-03	YE42091	OS 91	2038-12-03	YE42129	OS 129	2043-12-03	
YE42054	OS 54	2038-12-03	YE42092	OS 92	2038-12-03	YE42130	OS 130	2043-12-03	
YE42055	OS 55	2038-12-03	YE42093	OS 93	2038-12-03	YE42131	OS 131	2043-12-03	
YE42056	OS 56	2038-12-03	YE42094	OS 94	2038-12-03	YE42132	OS 132	2043-12-03	
YE42057	OS 57	2038-12-03	YE42095	OS 95	2038-12-03	YE42133	OS 133	2043-12-03	
YE42058	OS 58	2038-12-03	YE42096	OS 96	2038-12-03	YE42134	OS 134	2043-12-03	
YE42059	OS 59	2038-12-03	YE42097	OS 97	2043-12-03	YE42135	OS 135	2043-12-03	
YE42060	OS 60	2038-12-03	YE42098	OS 98	2043-12-03	YE42136	OS 136	2043-12-03	
YE42061	OS 61	2038-12-03	YE42099	OS 99	2043-12-03	YE42137	OS 137	2043-12-03	
YE42062	OS 62	2038-12-03	YE42100	OS 100	2043-12-03	YE42138	OS 138	2043-12-03	
YE42063	OS 63	2038-12-03	YE42101	OS 101	2043-12-03	YE42139	OS 139	2043-12-03	
YE42064	OS 64	2038-12-03	YE42102	OS 102	2043-12-03	YE42140	OS 140	2043-12-03	
YE42065	OS 65	2043-12-03	YE42103	OS 103	2043-12-03	YE42141	OS 141	2043-12-03	
YE42066	OS 66	2043-12-03	YE42104	OS 104	2043-12-03	YE42142	OS 142	2043-12-03	
YE42067	OS 67	2043-12-03	YE42105	OS 105	2043-12-03	YE42143	OS 143	2034-12-03	
YE42068	OS 68	2043-12-03	YE42106	OS 106	2043-12-03	YE42144	OS 144	2034-12-03	
YE42069	OS 69	2043-12-03	YE42107	OS 107	2043-12-03	YE42145	OS 145	2034-12-03	
YE42070	OS 70	2043-12-03	YE42108	OS 108	2043-12-03	YE42146	OS 146	2034-12-03	
YE42071	OS 71	2043-12-03	YE42109	OS 109	2043-12-03	YE42147	OS 147	2038-12-03	
YE42072	OS 72	2043-12-03	YE42110	OS 110	2043-12-03	YE42148	OS 148	2038-12-03	
YE42073	OS 73	2043-12-03	YE42111	OS 111	2034-12-03	YE42149	OS 149	2038-12-03	
YE42074	OS 74	2043-12-03	YE42112	OS 112	2034-12-03	YE42150	OS 150	2038-12-03	
YE42075	OS 75	2043-12-03	YE42113	OS 113	2034-12-03	YE42151	OS 151	2038-12-03	
YE42076	OS 76	2043-12-03	YE42114	OS 114	2034-12-03	YE42152	OS 152	2038-12-03	
YE42077	OS 77	2043-12-03	YE42115	OS 115	2038-12-03	YE42153	OS 153	2043-12-03	
YE42078	OS 78	2043-12-03	YE42116	OS 116	2038-12-03	YE42154	OS 154	2043-12-03	
YE42079	OS 79	2034-12-03	YE42117	OS 117	2038-12-03	YE42155	OS 155	2043-12-03	
YE42080	OS 80	2034-12-03	YE42118	OS 118	2038-12-03	YE42156	OS 156	2043-12-03	
YE42081	OS 81	2034-12-03	YE42119	OS 119	2038-12-03	YE42157	OS 157	2043-12-03	
YE42082	OS 82	2034-12-03	YE42120	OS 120	2038-12-03	YE42158	OS 158	2043-12-03	
YE42083	OS 83	2038-12-03	YE42121	OS 121	2038-12-03	YE42159	OS 159	2043-12-03	
YE42084	OS 84	2038-12-03	YE42122	OS 122	2038-12-03	YE42160	OS 160	2043-12-03	
YE42085	OS 85	2038-12-03	YE42123	OS 123	2038-12-03	YE42161	OS 161	2043-12-03	
YE42086	OS 86	2038-12-03	YE42124	OS 124	2038-12-03	YE42162	OS 162	2043-12-03	
YE42087	OS 87	2038-12-03	YE42125	OS 125	2038-12-03	YE42163	OS 163	2043-12-03	
YE42088	OS 88	2038-12-03	YE42126	OS 126	2038-12-03	YE42164	OS 164	2043-12-03	
YE42089	OS 89	2038-12-03	YE42127	OS 127	2038-12-03	YE42165	OS 165	2043-12-03	

Contiguous Macpass Claims		Contiguou	Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE42166	OS 166	2043-12-03	YE42204	OS 204	2039-12-03	YE42242	OS 242	2043-12-03	
YE42167	OS 167	2034-12-03	YE42205	OS 205	2038-12-03	YE42243	OS 243	2043-12-03	
YE42168	OS 168	2034-12-03	YE42206	OS 206	2039-12-03	YE42244	OS 244	2043-12-03	
YE42169	OS 169	2034-12-03	YE42207	OS 207	2038-12-03	YE42245	OS 245	2043-12-03	
YE42170	OS 170	2034-12-03	YE42208	OS 208	2039-12-03	YE42246	OS 246	2043-12-03	
YE42171	OS 171	2038-12-03	YE42209	OS 209	2038-12-03	YE42247	OS 247	2043-12-03	
YE42172	OS 172	2038-12-03	YE42210	OS 210	2039-12-03	YE42248	OS 248	2043-12-03	
YE42173	OS 173	2038-12-03	YE42211	OS 211	2043-12-03	YE42249	OS 249	2043-12-03	
YE42174	OS 174	2038-12-03	YE42212	OS 212	2043-12-03	YE42250	OS 250	2043-12-03	
YE42175	OS 175	2038-12-03	YE42213	OS 213	2043-12-03	YE42251	OS 251	2039-12-03	
YE42176	OS 176	2038-12-03	YE42214	OS 214	2043-12-03	YE42252	OS 252	2039-12-03	
YE42177	OS 177	2043-12-03	YE42215	OS 215	2043-12-03	YE42253	OS 253	2039-12-03	
YE42178	OS 178	2043-12-03	YE42216	OS 216	2043-12-03	YE42254	OS 254	2039-12-03	
YE42179	OS 179	2043-12-03	YE42217	OS 217	2043-12-03	YE42255	OS 255	2039-12-03	
YE42180	OS 180	2043-12-03	YE42218	OS 218	2043-12-03	YE42256	OS 256	2039-12-03	
YE42181	OS 181	2043-12-03	YE42219	OS 219	2043-12-03	YE42257	OS 257	2043-12-03	
YE42182	OS 182	2043-12-03	YE42220	OS 220	2043-12-03	YE42258	OS 258	2043-12-03	
YE42183	OS 183	2043-12-03	YE42221	OS 221	2043-12-03	YE42259	OS 259	2043-12-03	
YE42184	OS 184	2043-12-03	YE42222	OS 222	2043-12-03	YE42260	OS 260	2043-12-03	
YE42185	OS 185	2043-12-03	YE42223	OS 223	2043-12-03	YE42261	OS 261	2043-12-03	
YE42186	OS 186	2043-12-03	YE42224	OS 224	2043-12-03	YE42262	OS 262	2043-12-03	
YE42187	OS 187	2043-12-03	YE42225	OS 225	2039-12-03	YE42263	OS 263	2043-12-03	
YE42188	OS 188	2043-12-03	YE42226	OS 226	2039-12-03	YE42264	OS 264	2043-12-03	
YE42189	OS 189	2043-12-03	YE42227	OS 227	2039-12-03	YE42265	OS 265	2043-12-03	
YE42190	OS 190	2043-12-03	YE42228	OS 228	2039-12-03	YE42266	OS 266	2043-12-03	
YE42191	OS 191	2043-12-03	YE42229	OS 229	2039-12-03	YE42267	OS 267	2043-12-03	
YE42192	OS 192	2039-12-03	YE42230	OS 230	2039-12-03	YE42268	OS 268	2043-12-03	
YE42193	OS 193	2043-12-03	YE42231	OS 231	2039-12-03	YE42269	OS 269	2043-12-03	
YE42194	OS 194	2033-12-03	YE42232	OS 232	2039-12-03	YE42270	OS 270	2043-12-03	
YE42195	OS 195	2043-12-03	YE42233	OS 233	2043-12-03	YE42271	OS 271	2043-12-03	
YE42196	OS 196	2039-12-03	YE42234	OS 234	2043-12-03	YE42272	OS 272	2043-12-03	
YE42197	OS 197	2043-12-03	YE42235	OS 235	2043-12-03	YE42273	OS 273	2043-12-03	
YE42198	OS 198	2039-12-03	YE42236	OS 236	2043-12-03	YE42274	OS 274	2043-12-03	
YE42199	OS 199	2043-12-03	YE42237	OS 237	2043-12-03	YE42275	OS 275	2039-12-03	
YE42200	OS 200	2039-12-03	YE42238	OS 238	2043-12-03	YE42276	OS 276	2039-12-03	
YE42201	OS 201	2034-12-03	YE42239	OS 239	2043-12-03	YE42277	OS 277	2039-12-03	
YE42202	OS 202	2039-12-03	YE42240	OS 240	2043-12-03	YE42278	OS 278	2039-12-03	
YE42203	OS 203	2034-12-03	YE42241	OS 241	2043-12-03	YE42279	OS 279	2043-12-03	

Contiguous Macpass Claims		Contiguou	s Macpass C	laims	Contiguou	Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE42280	OS 280	2043-12-03	YE42318	OS 318	2034-12-03	YE42356	OS 356	2043-12-03	
YE42281	OS 281	2043-12-03	YE42319	OS 319	2039-12-03	YE42357	OS 357	2034-12-03	
YE42282	OS 282	2043-12-03	YE42320	OS 320	2039-12-03	YE42358	OS 358	2043-12-03	
YE42283	OS 283	2043-12-03	YE42321	OS 321	2039-12-03	YE42359	OS 359	2034-12-03	
YE42284	OS 284	2043-12-03	YE42322	OS 322	2039-12-03	YE42360	OS 360	2043-12-03	
YE42285	OS 285	2043-12-03	YE42323	OS 323	2043-12-03	YE42361	OS 361	2034-12-03	
YE42286	OS 286	2043-12-03	YE42324	OS 324	2043-12-03	YE42362	OS 362	2043-12-03	
YE42287	OS 287	2043-12-03	YE42325	OS 325	2043-12-03	YE42363	OS 363	2039-12-03	
YE42288	OS 288	2043-12-03	YE42326	OS 326	2043-12-03	YE42364	OS 364	2039-12-03	
YE42289	OS 289	2043-12-03	YE42327	OS 327	2043-12-03	YE42365	OS 365	2039-12-03	
YE42290	OS 290	2043-12-03	YE42328	OS 328	2043-12-03	YE42366	OS 366	2039-12-03	
YE42291	OS 291	2043-12-03	YE42329	OS 329	2043-12-03	YE42367	OS 367	2043-12-03	
YE42292	OS 292	2034-12-03	YE42330	OS 330	2043-12-03	YE42368	OS 368	2043-12-03	
YE42293	OS 293	2043-12-03	YE42331	OS 331	2043-12-03	YE42369	OS 369	2043-12-03	
YE42294	OS 294	2034-12-03	YE42332	OS 332	2043-12-03	YE42370	OS 370	2043-12-03	
YE42295	OS 295	2043-12-03	YE42333	OS 333	2043-12-03	YE42371	OS 371	2043-12-03	
YE42296	OS 296	2034-12-03	YE42334	OS 334	2043-12-03	YE42372	OS 372	2043-12-03	
YE42297	OS 297	2039-12-03	YE42335	OS 335	2034-12-03	YE42373	OS 373	2043-12-03	
YE42298	OS 298	2039-12-03	YE42336	OS 336	2034-12-03	YE42374	OS 374	2043-12-03	
YE42299	OS 299	2039-12-03	YE42337	OS 337	2034-12-03	YE42375	OS 375	2043-12-03	
YE42300	OS 300	2039-12-03	YE42338	OS 338	2034-12-03	YE42376	OS 376	2043-12-03	
YE42301	OS 301	2043-12-03	YE42339	OS 339	2034-12-03	YE42377	OS 377	2043-12-03	
YE42302	OS 302	2043-12-03	YE42340	OS 340	2034-12-03	YE42378	OS 378	2043-12-03	
YE42303	OS 303	2043-12-03	YE42341	OS 341	2039-12-03	YE42379	OS 379	2043-12-03	
YE42304	OS 304	2043-12-03	YE42342	OS 342	2039-12-03	YE42380	OS 380	2043-12-03	
YE42305	OS 305	2043-12-03	YE42343	OS 343	2039-12-03	YE42381	OS 381	2043-12-03	
YE42306	OS 306	2043-12-03	YE42344	OS 344	2039-12-03	YE42382	OS 382	2043-12-03	
YE42307	OS 307	2043-12-03	YE42345	OS 345	2043-12-03	YE42383	OS 383	2043-12-03	
YE42308	OS 308	2043-12-03	YE42346	OS 346	2043-12-03	YE42384	OS 384	2043-12-03	
YE42309	OS 309	2043-12-03	YE42347	OS 347	2043-12-03	YE42385	OS 385	2043-12-03	
YE42310	OS 310	2043-12-03	YE42348	OS 348	2043-12-03	YE42386	OS 386	2043-12-03	
YE42311	OS 311	2043-12-03	YE42349	OS 349	2043-12-03	YE42387	OS 387	2039-12-03	
YE42312	OS 312	2043-12-03	YE42350	OS 350	2043-12-03	YE42388	OS 388	2039-12-03	
YE42313	OS 313	2034-12-03	YE42351	OS 351	2043-12-03	YE42389	OS 389	2043-12-03	
YE42314	OS 314	2034-12-03	YE42352	OS 352	2043-12-03	YE42390	OS 390	2043-12-03	
YE42315	OS 315	2034-12-03	YE42353	OS 353	2043-12-03	YE42391	OS 391	2043-12-03	
YE42316	OS 316	2034-12-03	YE42354	OS 354	2043-12-03	YE42392	OS 392	2043-12-03	
YE42317	OS 317	2034-12-03	YE42355	OS 355	2043-12-03	YE42393	OS 393	2043-12-03	

Contiguous Macpass Claims		Contiguou	Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE42394	OS 394	2043-12-03	YE42432	OS 432	2043-12-03	YE42470	OS 470	2043-12-03	
YE42395	OS 395	2043-12-03	YE42433	OS 433	2043-12-03	YE42471	OS 471	2043-12-03	
YE42396	OS 396	2043-12-03	YE42434	OS 434	2043-12-03	YE42472	OS 472	2043-12-03	
YE42397	OS 397	2043-12-03	YE42435	OS 435	2043-12-03	YE42473	OS 473	2043-12-03	
YE42398	OS 398	2043-12-03	YE42436	OS 436	2043-12-03	YE42474	OS 474	2043-12-03	
YE42399	OS 399	2043-12-03	YE42437	OS 437	2043-12-03	YE42475	OS 475	2043-12-03	
YE42400	OS 400	2043-12-03	YE42438	OS 438	2043-12-03	YE42476	OS 476	2043-12-03	
YE42401	OS 401	2043-12-03	YE42439	OS 439	2043-12-03	YE42477	OS 477	2043-12-03	
YE42402	OS 402	2043-12-03	YE42440	OS 440	2043-12-03	YE42478	OS 478	2043-12-03	
YE42403	OS 403	2043-12-03	YE42441	OS 441	2044-12-03	YE42479	OS 479	2043-12-03	
YE42404	OS 404	2044-12-03	YE42442	OS 442	2044-12-03	YE42480	OS 480	2043-12-03	
YE42405	OS 405	2043-12-03	YE42443	OS 443	2043-12-03	YE42481	OS 481	2043-12-03	
YE42406	OS 406	2044-12-03	YE42444	OS 444	2043-12-03	YE42482	OS 482	2043-12-03	
YE42407	OS 407	2043-12-03	YE42445	OS 445	2043-12-03	YE42483	OS 483	2043-12-03	
YE42408	OS 408	2044-12-03	YE42446	OS 446	2043-12-03	YE42484	OS 484	2043-12-03	
YE42409	OS 409	2043-12-03	YE42447	OS 447	2043-12-03	YE42485	OS 485	2043-12-03	
YE42410	OS 410	2043-12-03	YE42448	OS 448	2043-12-03	YE42486	OS 486	2043-12-03	
YE42411	OS 411	2043-12-03	YE42449	OS 449	2043-12-03	YE42487	OS 487	2043-12-03	
YE42412	OS 412	2043-12-03	YE42450	OS 450	2043-12-03	YE42488	OS 488	2043-12-03	
YE42413	OS 413	2043-12-03	YE42451	OS 451	2043-12-03	YE42489	OS 489	2043-12-03	
YE42414	OS 414	2043-12-03	YE42452	OS 452	2043-12-03	YE42490	OS 490	2043-12-03	
YE42415	OS 415	2043-12-03	YE42453	OS 453	2043-12-03	YE42491	OS 491	2043-12-03	
YE42416	OS 416	2043-12-03	YE42454	OS 454	2043-12-03	YE42492	OS 492	2043-12-03	
YE42417	OS 417	2043-12-03	YE42455	OS 455	2043-12-03	YE42493	OS 493	2043-12-03	
YE42418	OS 418	2043-12-03	YE42456	OS 456	2043-12-03	YE42494	OS 494	2043-12-03	
YE42419	OS 419	2043-12-03	YE42457	OS 457	2043-12-03	YE42495	OS 495	2043-12-03	
YE42420	OS 420	2043-12-03	YE42458	OS 458	2043-12-03	YE42496	OS 496	2043-12-03	
YE42421	OS 421	2043-12-03	YE42459	OS 459	2043-12-03	YE42497	OS 497	2043-12-03	
YE42422	OS 422	2043-12-03	YE42460	OS 460	2043-12-03	YE42498	OS 498	2043-12-03	
YE42423	OS 423	2044-12-03	YE42461	OS 461	2043-12-03	YE42499	OS 499	2043-12-03	
YE42424	OS 424	2044-12-03	YE42462	OS 462	2043-12-03	YE42500	OS 500	2043-12-03	
YE42425	OS 425	2044-12-03	YE42463	OS 463	2043-12-03	YE42501	OS 501	2043-12-03	
YE42426	OS 426	2044-12-03	YE42464	OS 464	2043-12-03	YE42502	OS 502	2043-12-03	
YE42427	OS 427	2043-12-03	YE42465	OS 465	2043-12-03	YE42503	OS 503	2043-12-03	
YE42428	OS 428	2043-12-03	YE42466	OS 466	2043-12-03	YE42504	OS 504	2043-12-03	
YE42429	OS 429	2043-12-03	YE42467	OS 467	2043-12-03	YE42505	OS 505	2043-12-03	
YE42430	OS 430	2043-12-03	YE42468	OS 468	2043-12-03	YE42506	OS 506	2043-12-03	
YE42431	OS 431	2043-12-03	YE42469	OS 469	2043-12-03	YE42507	OS 507	2043-12-03	

Contiguous Macpass Claims		Contiguous	Contiguous Macpass Claims			Contiguous Macpass Claims			
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	
YE42508	OS 508	2043-12-03	YD105461	Sol 9	2037-12-03	YD105499	Sol 47	2037-12-03	
YE42509	OS 509	2043-12-03	YD105462	Sol 10	2037-12-03	YD105500	Sol 48	2037-12-03	
YE42510	OS 510	2043-12-03	YD105463	Sol 11	2037-12-03	YD105501	Sol 49	2037-12-03	
YE42511	OS 511	2043-12-03	YD105464	Sol 12	2037-12-03	YD105502	Sol 50	2037-12-03	
YE42512	OS 512	2043-12-03	YD105465	Sol 13	2037-12-03	YD105503	Sol 51	2037-12-03	
YE42513	OS 513	2043-12-03	YD105466	Sol 14	2037-12-03	YD105504	Sol 52	2037-12-03	
YE42514	OS 514	2043-12-03	YD105467	Sol 15	2037-12-03	YD105505	Sol 53	2037-12-03	
YE42515	OS 515	2043-12-03	YD105468	Sol 16	2037-12-03	YD105506	Sol 54	2037-12-03	
YE42516	OS 516	2043-12-03	YD105469	Sol 17	2037-12-03	YD105507	Sol 55	2037-12-03	
YE42517	OS 517	2043-12-03	YD105470	Sol 18	2037-12-03	YD105508	Sol 56	2037-12-03	
YE42518	OS 518	2043-12-03	YD105471	Sol 19	2037-12-03	YD105509	Sol 57	2037-12-03	
YE42519	OS 519	2043-12-03	YD105472	Sol 20	2037-12-03	YD105510	Sol 58	2037-12-03	
YE42520	OS 520	2043-12-03	YD105473	Sol 21	2037-12-03	YD105511	Sol 59	2037-12-03	
YE42521	OS 521	2043-12-03	YD105474	Sol 22	2037-12-03	YD105512	Sol 60	2037-12-03	
YE42522	OS 522	2043-12-03	YD105475	Sol 23	2037-12-03	YD105513	Sol 61	2037-12-03	
YE42523	OS 523	2043-12-03	YD105476	Sol 24	2037-12-03	YD105514	Sol 62	2037-12-03	
YE42524	OS 524	2043-12-03	YD105477	Sol 25	2037-12-03	YD105515	Sol 63	2037-12-03	
YE42525	OS 525	2043-12-03	YD105478	Sol 26	2037-12-03	YD105516	Sol 64	2037-12-03	
YE42526	OS 526	2043-12-03	YD105479	Sol 27	2037-12-03	YD105517	Sol 65	2037-12-03	
YE42527	OS 527	2043-12-03	YD105480	Sol 28	2037-12-03	YD105518	Sol 66	2037-12-03	
YE42528	OS 528	2043-12-03	YD105481	Sol 29	2037-12-03	YD105519	Sol 67	2037-12-03	
YE42529	OS 529	2043-12-03	YD105482	Sol 30	2037-12-03	YD105520	Sol 68	2037-12-03	
YE42530	OS 530	2043-12-03	YD105483	Sol 31	2037-12-03	YD105521	Sol 69	2037-12-03	
YE42531	OS 531	2043-12-03	YD105484	Sol 32	2037-12-03	YD105522	Sol 70	2037-12-03	
YE42532	OS 532	2043-12-03	YD105485	Sol 33	2037-12-03	YD105523	Sol 71	2037-12-03	
YE39295	SNG 1	2039-12-03	YD105486	Sol 34	2037-12-03	YD105524	Sol 72	2037-12-03	
YE39296	SNG 2	2039-12-03	YD105487	Sol 35	2037-12-03	YD105525	Sol 73	2037-12-03	
YE39297	SNG 3	2039-12-03	YD105488	Sol 36	2037-12-03	YD105526	Sol 74	2037-12-03	
YE39298	SNG 4	2039-12-03	YD105489	Sol 37	2037-12-03	YD105527	Sol 75	2037-12-03	
YE39299	SNG 5	2043-12-03	YD105490	Sol 38	2037-12-03	YD105528	Sol 76	2037-12-03	
YD105453	Sol 1	2037-12-03	YD105491	Sol 39	2037-12-03	YD105529	Sol 77	2037-12-03	
YD105454	Sol 2	2037-12-03	YD105492	Sol 40	2037-12-03	YD105530	Sol 78	2037-12-03	
YD105455	Sol 3	2037-12-03	YD105493	Sol 41	2037-12-03	YD105531	Sol 79	2037-12-03	
YD105456	Sol 4	2037-12-03	YD105494	Sol 42	2037-12-03	YD105532	Sol 80	2037-12-03	
YD105457	Sol 5	2037-12-03	YD105495	Sol 43	2037-12-03	YD105533	Sol 81	2037-12-03	
YD105458	Sol 6	2037-12-03	YD105496	Sol 44	2037-12-03	YD105534	Sol 82	2037-12-03	
YD105459	Sol 7	2037-12-03	YD105497	Sol 45	2037-12-03	YD105535	Sol 83	2037-12-03	
YD105460	Sol 8	2037-12-03	YD105498	Sol 46	2037-12-03	YD105536	Sol 84	2037-12-03	

Contiguous Macpass Claims		Contiguous	Macpass C	laims	Contiguous	Macpass C	laims	
Grant	Claim	Expiry Date	Grant	Claim	Expiry Date	Grant	Claim	Expiry Date
YD105537	Sol 85	2037-12-03	YD105575	Sol 123	2037-12-03	YD105613	Sol 161	2037-12-03
YD105538	Sol 86	2037-12-03	YD105576	Sol 124	2037-12-03	YD105614	Sol 162	2037-12-03
YD105539	Sol 87	2037-12-03	YD105577	Sol 125	2037-12-03	YD105615	Sol 163	2037-12-03
YD105540	Sol 88	2037-12-03	YD105578	Sol 126	2037-12-03	YD105616	Sol 164	2037-12-03
YD105541	Sol 89	2037-12-03	YD105579	Sol 127	2037-12-03	YD105617	Sol 165	2037-12-03
YD105542	Sol 90	2037-12-03	YD105580	Sol 128	2037-12-03	YD105618	Sol 166	2037-12-03
YD105543	Sol 91	2037-12-03	YD105581	Sol 129	2037-12-03	YD105619	Sol 167	2037-12-03
YD105544	Sol 92	2037-12-03	YD105582	Sol 130	2037-12-03	YD105620	Sol 168	2037-12-03
YD105545	Sol 93	2037-12-03	YD105583	Sol 131	2037-12-03	YD105621	Sol 169	2037-12-03
YD105546	Sol 94	2037-12-03	YD105584	Sol 132	2037-12-03	YD105622	Sol 170	2037-12-03
YD105547	Sol 95	2037-12-03	YD105585	Sol 133	2037-12-03	YD105623	Sol 171	2037-12-03
YD105548	Sol 96	2037-12-03	YD105586	Sol 134	2037-12-03	YD105624	Sol 172	2037-12-03
YD105549	Sol 97	2037-12-03	YD105587	Sol 135	2037-12-03	YD105625	Sol 173	2037-12-03
YD105550	Sol 98	2037-12-03	YD105588	Sol 136	2037-12-03	YD105626	Sol 174	2037-12-03
YD105551	Sol 99	2037-12-03	YD105589	Sol 137	2037-12-03	YD105627	Sol 175	2037-12-03
YD105552	Sol 100	2037-12-03	YD105590	Sol 138	2037-12-03	YD105628	Sol 176	2037-12-03
YD105553	Sol 101	2037-12-03	YD105591	Sol 139	2037-12-03	YD105629	Sol 177	2037-12-03
YD105554	Sol 102	2037-12-03	YD105592	Sol 140	2037-12-03	YD105630	Sol 178	2037-12-03
YD105555	Sol 103	2037-12-03	YD105593	Sol 141	2037-12-03	YD105631	Sol 179	2037-12-03
YD105556	Sol 104	2037-12-03	YD105594	Sol 142	2037-12-03	YD105632	Sol 180	2037-12-03
YD105557	Sol 105	2037-12-03	YD105595	Sol 143	2037-12-03	YD105633	Sol 181	2037-12-03
YD105558	Sol 106	2037-12-03	YD105596	Sol 144	2037-12-03	YD105634	Sol 182	2037-12-03
YD105559	Sol 107	2037-12-03	YD105597	Sol 145	2037-12-03	YD105635	Sol 183	2037-12-03
YD105560	Sol 108	2037-12-03	YD105598	Sol 146	2037-12-03	YD105636	Sol 184	2037-12-03
YD105561	Sol 109	2037-12-03	YD105599	Sol 147	2037-12-03	YD105637	Sol 185	2037-12-03
YD105562	Sol 110	2037-12-03	YD105600	Sol 148	2037-12-03	YD105638	Sol 186	2037-12-03
YD105563	Sol 111	2037-12-03	YD105601	Sol 149	2037-12-03	YD105639	Sol 187	2037-12-03
YD105564	Sol 112	2037-12-03	YD105602	Sol 150	2037-12-03	YD105640	Sol 188	2037-12-03
YD105565	Sol 113	2037-12-03	YD105603	Sol 151	2037-12-03	YD105641	Sol 189	2037-12-03
YD105566	Sol 114	2037-12-03	YD105604	Sol 152	2037-12-03	YD105642	Sol 190	2037-12-03
YD105567	Sol 115	2037-12-03	YD105605	Sol 153	2037-12-03	YD105643	Sol 191	2037-12-03
YD105568	Sol 116	2037-12-03	YD105606	Sol 154	2037-12-03	YD105644	Sol 192	2037-12-03
YD105569	Sol 117	2037-12-03	YD105607	Sol 155	2037-12-03	YD105645	Sol 193	2037-12-03
YD105570	Sol 118	2037-12-03	YD105608	Sol 156	2037-12-03	YD105646	Sol 194	2037-12-03
YD105571	Sol 119	2037-12-03	YD105609	Sol 157	2037-12-03	YD105647	Sol 195	2037-12-03
YD105572	Sol 120	2037-12-03	YD105610	Sol 158	2037-12-03	YD105648	Sol 196	2037-12-03
YD105573	Sol 121	2037-12-03	YD105611	Sol 159	2037-12-03	YD105649	Sol 197	2037-12-03
YD105574	Sol 122	2037-12-03	YD105612	Sol 160	2037-12-03	YD105650	Sol 198	2037-12-03

Expiry Date

2037-12-03 2037-12-03

Contiguous Macpass Claims Claim

Sol 205

Sol 206

Grant

YD105657

YD105658

Contiguous Macpass Claims								
Grant	Claim	Expiry Date						
YD105651	Sol 199	2037-12-03						
YD105652	Sol 200	2037-12-03						
YD105653	Sol 201	2037-12-03						

Ben Claim	en Claims			Ben Claims		
Grant	Claim	Expiry Date		Grant	Claim	
YE39001	BEN 1	2032-04-15		YE39032	BEN 32	
YE39002	BEN 2	2032-04-15		YE39033	BEN 33	
YE39003	BEN 3	2032-04-15		YE39034	BEN 34	
YE39004	BEN 4	2032-04-15		YE39035	BEN 35	
YE39005	BEN 5	2032-04-15		YE39036	BEN 36	
YE39006	BEN 6	2032-04-15		YE39037	BEN 37	
YE39007	BEN 7	2032-04-15		YE39038	BEN 38	
YE39008	BEN 8	2032-04-15		YE39039	BEN 39	
YE39009	BEN 9	2032-04-15		YE39040	BEN 40	
YE39010	BEN 10	2032-04-15		YE39041	BEN 41	
YE39011	BEN 11	2032-04-15		YE39042	BEN 42	
YE39012	BEN 12	2032-04-15		YE39043	BEN 43	
YE39013	BEN 13	2032-04-15		YE39044	BEN 44	
YE39014	BEN 14	2032-04-15		YE39045	BEN 45	
YE39015	BEN 15	2032-04-15		YE39046	BEN 46	
YE39016	BEN 16	2032-04-15		YE39047	BEN 47	
YE39017	BEN 17	2032-04-15		YE39048	BEN 48	
YE39018	BEN 18	2032-04-15		YE39049	BEN 49	
YE39019	BEN 19	2032-04-15		YE39050	BEN 50	
YE39020	BEN 20	2032-04-15		YE39051	BEN 51	
YE39021	BEN 21	2032-04-15		YE39052	BEN 52	
YE39022	BEN 22	2032-04-15		YE39053	BEN 53	
YE39023	BEN 23	2032-04-15		YE39054	BEN 54	
YE39024	BEN 24	2032-04-15		YE39055	BEN 55	
YE39025	BEN 25	2032-04-15		YE39056	BEN 56	
YE39026	BEN 26	2032-04-15		YE39057	BEN 57	
YE39027	BEN 27	2032-04-15		YE39058	BEN 58	
YE39028	BEN 28	2032-04-15		YE39059	BEN 59	
YE39029	BEN 29	2032-04-15		YE39060	BEN 60	
YE39030	BEN 30	2032-04-15		YE39061	BEN 61	
YE39031	BEN 31	2032-04-15		YE39062	BEN 62	

Contiguous Macpass Claims							
Grant	Claim	Expiry Date					
YD105654	Sol 202	2037-12-03					
YD105655	Sol 203	2037-12-03					
YD105656	Sol 204	2037-12-03					

2037-12-03			
	Ben Claims	S	
Expiry Date	Grant	Claim	Expiry Date
2032-04-15	YE39063	BEN 63	2032-04-15
2032-04-15	YE39064	BEN 64	2032-04-15
2032-04-15	YE39065	BEN 65	2032-04-15
2032-04-15	YE39066	BEN 66	2032-04-15
2032-04-15	YE39067	BEN 67	2032-04-15
2032-04-15	YE39068	BEN 68	2032-04-15
2032-04-15	YE39069	BEN 69	2032-04-15
2032-04-15	YE39070	BEN 70	2032-04-15
2032-04-15	YE39071	BEN 71	2032-04-15
2032-04-15	YE39072	BEN 72	2032-04-15
2032-04-15	YE39073	BEN 73	2032-04-15
2032-04-15	YE39074	BEN 74	2032-04-15
2032-04-15	YE39075	BEN 75	2032-04-15
2032-04-15	YE39076	BEN 76	2032-04-15
2032-04-15	YE39077	BEN 77	2032-04-15
2032-04-15	YE39078	BEN 78	2032-04-15
2032-04-15	YE39079	BEN 79	2032-04-15
2032-04-15	YE39080	BEN 80	2032-04-15

2032-04-15

2032-04-15

2032-04-15

2032-04-15

2032-04-15

2032-04-15

2032-04-15

2032-04-15

2032-04-15 2032-04-15

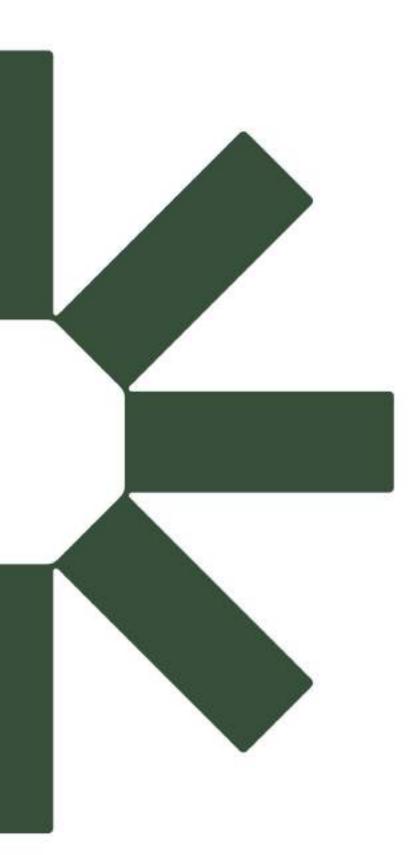
2032-04-15

2032-04-15

2032-04-15

Stump Clai	Stump Claims			ns	
Grant	Claim	Expiry Date	Grant	Claim	Expiry D
YD105173	Nid 1	2028-04-06	YD105213	Nid 41	2028-04-
YD105174	Nid 2	2028-04-06	YD105214	Nid 42	2028-04-
YD105175	Nid 3	2028-04-06	YD105215	Nid 43	2028-04-
YD105176	Nid 4	2028-04-06	YD105216	Nid 44	2028-04-
YD105177	Nid 5	2028-04-06	YD105217	Nid 45	2028-04-
YD105178	Nid 6	2028-04-06	YD105219	Nid 47	2028-04-
YD105179	Nid 7	2028-04-06	YD105221	Nid 49	2028-04-
YD105180	Nid 8	2028-04-06	YD105222	Nid 50	2028-04-
YD105181	Nid 9	2028-04-06	YD105223	Nid 51	2028-04-
YD105182	Nid 10	2028-04-06	YD105224	Nid 52	2028-04-
YD105183	Nid 11	2028-04-06	YD105225	Nid 53	2028-04-
YD105184	Nid 12	2028-04-06	YD105226	Nid 54	2028-04-
YD105185	Nid 13	2028-04-06	YD105227	Nid 55	2028-04-
YD105186	Nid 14	2028-04-06	YD105228	Nid 56	2028-04-
YD105187	Nid 15	2028-04-06	YD105229	Nid 57	2028-04-
YD105188	Nid 16	2028-04-06	YD105230	Nid 58	2028-04-
YD105189	Nid 17	2028-04-06	YD105231	Nid 59	2028-04-
YD105190	Nid 18	2028-04-06	YD105232	Nid 60	2028-04-
YD105192	Nid 20	2028-04-06	YD105233	Nid 61	2028-04-
YD105194	Nid 22	2028-04-06	YD105234	Nid 62	2028-04-
YD105197	Nid 25	2028-04-06	YD105235	Nid 63	2028-04-
YD105198	Nid 26	2028-04-06	YD105236	Nid 64	2028-04-
YD105199	Nid 27	2028-04-06	YD105237	Nid 65	2028-04-
YD105200	Nid 28	2028-04-06	YD105238	Nid 66	2028-04-
YD105201	Nid 29	2028-04-06	YD105239	Nid 67	2028-04-
YD105202	Nid 30	2028-04-06	YD105240	Nid 68	2028-04-
YD105203	Nid 31	2028-04-06	YD105242	Nid 70	2028-04-0
YD105204	Nid 32	2028-04-06	YD105244	Nid 72	2028-04-
YD105205	Nid 33	2028-04-06	YD72835	SOC 33	2028-04-
YD105206	Nid 34	2028-04-06	YD72837	SOC 35	2028-04-
YD105207	Nid 35	2028-04-06	YD72838	SOC 36	2028-04-
YD105208	Nid 36	2028-04-06	YD72839	SOC 37	2028-04-
YD105209	Nid 37	2028-04-06	YD72840	SOC 38	2028-04-
YD105210	Nid 38	2028-04-06	YD72841	SOC 39	2028-04-
YD105211	Nid 39	2028-04-06	YD72842	SOC 40	2028-04-
YD105212	Nid 40	2028-04-06			

Tom Leases				
Grant	Lease	Claim	Expiry Date	
60495	OL00250	TOM 1	10/12/2039	
60496	OL00251	TOM 2	10/12/2039	
60497	OL00252	TOM 3	10/12/2039	
60498	OL00253	TOM 4	10/12/2039	
60499	OL00254	TOM 5	10/12/2039	
60500	OL00255	TOM 6	10/12/2039	
60501	OL00256	TOM 7	10/12/2039	
60502	OL00257	TOM 8	10/12/2039	
60503	OL00258	TOM 9	10/12/2039	
60504	OL00259	TOM 10	10/12/2039	
60505	OL00260	TOM 11	10/12/2039	
60506	OL00261	TOM 12	10/12/2039	
60507	OL00262	TOM 13	10/12/2039	
60508	OL00263	TOM 14	10/12/2039	
60509	OL00264	TOM 15	10/12/2039	
60510	OL00265	TOM 16	10/12/2039	
60511	OL00266	TOM 18	10/12/2039	
60512	OL00267	TOM 20	10/12/2039	
60513	OL00268	TOM 21	10/12/2039	
60514	OL00269	TOM 22	10/12/2039	
60515	OL00270	TOM 23	10/12/2039	
60516	OL00271	TOM 36	10/12/2039	
60517	OL00272	TOM 38	10/12/2039	
60518	OL00273	TOM 40	10/12/2039	
60519	OL00274	TOM 19	10/12/2039	
60520	OL00275	TOM 24	10/12/2039	
60521	OL00276	TOM 39	10/12/2039	
60522	OL00277	TOM 41	10/12/2039	
60523	OL00278	TOM 43	10/12/2039	
60524	OL00279	TOM 45	10/12/2039	
60525	OL00280	TOM 47	10/12/2039	
60526	OL00281	TOM 49	10/12/2039	
60527	OL00282	TOM 17	10/12/2039	
60528	OL00283	TOM 25	10/12/2039	
60529	OL00284	TOM 34	10/12/2039	
60530	OL00285	TOM 42	10/12/2039	
60531	OL00286	TOM 44	10/12/2039	
60532	OL00287	TOM 46	10/12/2039	


Tom Leases				
Grant	Lease	Claim	Expiry Date	
60533	OL00288	TOM 48	10/12/2039	
60534	OL00289	TOM 50	10/12/2039	
60535	OL00290	TOM 26	10/12/2039	
60536	OL00291	TOM 32	10/12/2039	
60537	OL00292	TOM 27	10/12/2039	
60538	OL00293	TOM 28	10/12/2039	
60539	OL00294	TOM 29	10/12/2039	
60540	OL00295	TOM 30	10/12/2039	
60541	OL00296	TOM 31	10/12/2039	
60542	OL00297	TOM 33	10/12/2039	
60543	OL00298	TOM 35	10/12/2039	
60544	OL00299	TOM 37	10/12/2039	
60545	NM00818	TOM 51	10/12/2039	
60546	NM00819	TOM 52	10/12/2039	
60547	NM00820	TOM 53	10/12/2039	
60548	OL00300	TOM 54	10/12/2039	
60549	OL00301	TOM 55	10/12/2039	
60550	OL00302	TOM 56	10/12/2039	
63525	OL00303	TOM 57	10/12/2039	
63526	OL00304	TOM 58	10/12/2039	
63527	OL00305	TOM 59	10/12/2039	
63528	OL00306	TOM 60	10/12/2039	
63529	OL00307	TOM 61	10/12/2039	
63530	OL00308	TOM 62	10/12/2039	
63531	OL00309	TOM 63	10/12/2039	
63532	OL00310	TOM 64	10/12/2039	
63533	OL00311	TOM 65	10/12/2039	
63534	OL00312	TOM 66	10/12/2039	
63535	OL00313	TOM 67	10/12/2039	
63536	OL00314	TOM 68	10/12/2039	
63537	OL00315	TOM 69	10/12/2039	
63538	OL00316	TOM 70	10/12/2039	
63539	OL00317	TOM 71	10/12/2039	
63540	OL00318	TOM 72	10/12/2039	
63541	OL00319	TOM 73	10/12/2039	
63542	OL00320	TOM 74	10/12/2039	
63543	OL00321	TOM 75	10/12/2039	
63544	OL00322	TOM 76	10/12/2039	

Tom Leases				
Grant	Lease	Claim	Expiry Date	
63545	OL00323	TOM 77	10/12/2039	
63546	OL00324	TOM 78	10/12/2039	
63547	OL00325	TOM 79	10/12/2039	
63548	OL00326	TOM 80	10/12/2039	
63549	OL00327	TOM 81	10/12/2039	
63550	OL00328	TOM 82	10/12/2039	
63551	OL00329	TOM 83	10/12/2039	
63552	OL00330	TOM 84	10/12/2039	
63553	OL00331	TOM 86	10/12/2039	
63554	OL00332	TOM 87	10/12/2039	
63555	OL00333	TOM 88	10/12/2039	
63556	OL00334	TOM 89	10/12/2039	
63557	OL00335	TOM 90	10/12/2039	
63558	OL00336	TOM 91	10/12/2039	
63559	OL00337	TOM 92	10/12/2039	
63560	OL00338	TOM 93	10/12/2039	
63561	OL00339	TOM 94	10/12/2039	
63562	OL00340	TOM 95	10/12/2039	
63563	OL00341	TOM 96	10/12/2039	
63564	OL00342	TOM 97	10/12/2039	
63565	OL00343	TOM 98	10/12/2039	
63566	OL00344	TOM 99	10/12/2039	
63567	OL00345	TOM 100	10/12/2039	
63568	OL00346	TOM 101	10/12/2039	
63569	OL00347	TOM 102	10/12/2039	
63570	OL00348	TOM 103	10/12/2039	
63571	OL00349	TOM 104	10/12/2039	
63572	OL00350	TOM 105	10/12/2039	
63573	OL00351	TOM 107	10/12/2039	
63574	OL00352	TOM 108	10/12/2039	
63575	OL00353	TOM 109	10/12/2039	
63576	OL00354	TOM 110	10/12/2039	
63577	OL00355	TOM 111	10/12/2039	
63578	OL00356	TOM 112	10/12/2039	
63579	OL00357	TOM 113	10/12/2039	
63580	OL00358	TOM 114	10/12/2039	
63581	OL00359	TOM 115	10/12/2039	
63582	OL00360	TOM 116	10/12/2039	

Tom Leases				
Grant	Lease	Claim	Expiry Date	
63583	OL00361	TOM 117	10/12/2039	
66850	OL00362	TOM 118	10/12/2039	
66851	OL00363	TOM 119	10/12/2039	
66852	OL00364	TOM 125	10/12/2039	
66853	OL00365	TOM 126	10/12/2039	
66854	OL00366	TOM 129	10/12/2039	
66855	OL00367	TOM 130	10/12/2039	
66856	OL00368	TOM 131	10/12/2039	
66857	OL00369	TOM 132	10/12/2039	
66858	OL00370	TOM 120	10/12/2039	
66859	OL00371	TOM 121	10/12/2039	
66860	OL00372	TOM 124	10/12/2039	
66861	OL00373	TOM 127	10/12/2039	
66862	OL00374	TOM 128	10/12/2039	
66863	OL00375	TOM 133	10/12/2039	
66864	OL00376	TOM 134	10/12/2039	
66865	OL00377	TOM 141	10/12/2039	
66866	OL00378	TOM 122	10/12/2039	
66867	OL00379	TOM 123	10/12/2039	
66868	OL00380	TOM 135	10/12/2039	
66869	OL00381	TOM 136	10/12/2039	
66870	OL00382	TOM 137	10/12/2039	
66871	OL00383	TOM 138	10/12/2039	
66872	OL00384	TOM 139	10/12/2039	
66873	OL00385	TOM 140	10/12/2039	
67415	NM00821	TOM 142	10/12/2039	
67416	OL00386	TOM 143	10/12/2039	
67417	NM00822	TOM 144	10/12/2039	
67418	OL00387	TOM 145	10/12/2039	
67419	OL00388	TOM 146	10/12/2039	

Making Sustainability Happen