ASX RELEASE | 28 May 2024

Adina Mineral Resource increases 33% to 78Mt at 1.15% Li₂O with 79% Indicated

HIGHLIGHTS

- Mineral Resource increased 33% to 77.9Mt at 1.15% Li₂O at Winsome's flagship Adina Lithium Project (**Adina**) in the Eeyou Istchee James Bay region of Quebec, Canada.
- Mineral Resource corresponds to 2.21Mt Lithium Carbonate Equivalent (LCE) and confirms Adina's positioning as one of the largest undeveloped lithium deposits in the world.
- 61.4Mt at 1.14% Li₂O in the higher confidence Indicated category derived from systematic drilling is a strong foundation for long life project feasibility studies.
- The Adina Mineral Resource outcrops at surface and includes 48.7Mt at 1.20% Li₂O in the top 150m from surface (vertical depth) allowing it to be mined by open pit methods.
- Near surface Main Zone resource now stands at 37Mt at 1.23% Li₂O (Indicated and Inferred.).
- Ongoing exploration drilling focussed on testing extensions to mineralisation is expected to support continued resource growth with the potential inclusion of mineralisation intersected in drilling west and southwest of Adina Main.
- This new Mineral Resource update and current metallurgical test work will underpin both Greenfield and Brownfield project studies on track for completion 2H 2024.
- Simultaneous technical studies, permitting support studies, and environmental and social impact assessment processes for Adina underway in parallel with Project development studies ongoing, including comprehensive environmental baseline work and infrastructure planning.
- Dense Media Separation (DMS) test work results provides encouragement for a strong business case for Adina¹.
- Due diligence work continues on the option to acquire nearby Renard Operation and associated infrastructure with project studies including Renard as an operating scenario.
- Appointment of Ms. Kim-Quyen Nguyen as VP Projects to lead project studies and Mr. Walter M\u00e4del, an internal hard rock lithium processing expert, to support the project team in assessing the potential repurposing of the Renard process plant.

¹ "Exceptional Results from Metallurgical Testing" ASX Announcement 1 June 2022 with additional information 8 June 2022. "Exceptional Metallurgical Test work Results from Adina" ASX Announcement 20 February 2024.

Lithium explorer / developer Winsome Resources (ASX:WR1; "Winsome" or "the Company") is pleased to announce a Mineral Resource Estimate (MRE) upgrade at its 100 per cent owned Adina Lithium Project (Adina) in the Eeyou Istchee James Bay region of Quebec, Canada.

The MRE upgrade significantly increases the global tonnage by 33% to 77.9 million tonnes (**Mt**) at an improved grade of 1.15% Li₂O, with an increase of 37% in Lithium Carbonate Equivalent (LCE) to over 2.21 million tonnes LCE. Importantly the MRE now includes 61.4Mt at 1.14% Li₂O in the higher confidence Indicated category as a result of the systematic drilling which has been carried out at Adina (refer Table 1 below for full details including the quantities of Indicated and Inferred material).

WINSOME'S MANAGING DIRECTOR CHRIS EVANS SAID:

"The update to the MRE affirms the significance of our global resource and solidifies our position and strategic location at the heart of the green energy industry and EV supply chain in North America.

"To increase the resource by almost 20Mt while also enhancing our grade and resource category is an exceptional outcome from our latest phase of systematic drilling. In particular the grade which has been defined close to surface in the Main Zone is a key advantage as we progress the Adina Lithium Project.

"It's important to emphasise the scale, tenor and metallurgical properties of Adina are equivalent to the tier one lithium assets globally.

"This is an exciting time for Winsome, the simultaneous implementation of our exploration, development and corporate strategies are achieving well planned and executed progress.

Also, it is a great pleasure to welcome Kim Nguyen to the Winsome team as VP Projects. Kim's recent experience managing mine development projects within the James Bay region will prove to be a of huge benefit to Winsome and help us complete our due diligence and project studies in the coming months and years. I am also very pleased to be working with Walter Mädel again given his extensive relevant experience with lithium processing and DMS plants globally.

We look forward to updating our shareholders on the progress of our due diligence to acquire the Renard Operation, as well as our ongoing exploration and study activities."

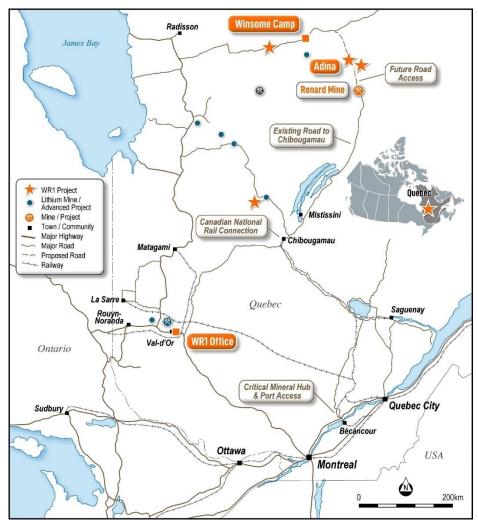
The upgraded MRE is based on results from 186 drillholes representing 57,756 metres completed to 11 April 2024 as part of the Company's extensive exploration and resource delineation drilling program.

Lithium mineralisation currently classified as Inferred in the MRE will be targeted in future resource delineation drilling, with the focus on converting near surface material into the Indicated category. Mineralisation has also been intersected in drilling outside the pit shell which constrains the MRE and further drilling, if successful, may result in some of this mineralisation being added to future MRE updates.

A total strike length of 3.1km of near-surface lithium mineralisation in spodumene-bearing pegmatites has been defined in drilling at Adina to date. Significantly mineralisation **remains open to the east and west along strike, up-dip to the north, and at depth**, at Adina. The recent Adina SW discovery², with an intersection of 61.5m at 1.62% Li₂O, highlights the potential for additional mineralised pegmatites to be discovered with further exploration at Adina.

² "Exploration drilling discovers 61.5m at 1.62% Li₂O" ASX Announcement 11 April 2024

Completion of the MRE upgrade for Adina has allowed development studies to advance, including detailed mine planning and scheduling, process flowsheet and plant design, and associated infrastructure studies with a view to publishing initial project studies in Q3 2024.


Environmental baseline and infrastructure planning studies are already underway, with ongoing discussions with representatives from the Cree Nation of Mistissini (on whose traditional lands Adina is on) as well as various stakeholders in Quebec.

In parallel with project studies, due diligence is continuing on the option to acquire the established Renard Operation, processing facility and associated infrastructure (**Renard Operation**) located only 65km from the Adina Lithium Deposit. Winsome has secured an exclusive option to acquire, at its election, the assets comprising the Renard Operation or all of the issued capital in Stornoway (refer ASX Announcement 3 April 2024). The results of the project studies will be used to guide the Company's decision on the option.

Winsome Resources' flagship Adina Lithium Project

The Adina Lithium Project is located within a supportive Tier 1 mining jurisdiction in the Eeyou Istchee James Bay region of Quebec, Canada (Figure 1). The province of Quebec hosts multiple operating mines, has an established regulatory framework and existing infrastructure providing a clear pathway towards development.

Figure 1. Winsome Resources projects in the Eeyou Istchee James Bay region of Quebec, Canada

The MRE comprises mineralised pegmatite dykes immediately adjacent to each other with the potential to be developed efficiently as one large mining operation (Figure 2).

The MRE update includes material from the Adina East area, where drilling has confirmed the continuity of the MZ between Adina Main (Jamar) and Adina East³. With the identification of continuity between Adina Main and Adina East, a systematic drill campaign was undertaken with the aim of providing data for the MRE Update at a regular spacing (approximately 100m x 100m) along the entire strike length at Adina East (Figure 5). All drilling results used in the MRE are included in the Appendices.

The MRE update **does not include** material from other known spodumene pegmatite occurrences within the Adina Lithium Project such as the Ridge Zone and the newly discovered Adina SW Zone (Figure 2). Given their proximity there is the potential for these pegmatite swarms to be able to be mined as part of a single operation and potentially to combine into one larger mineralised body as their extents are better delineated by drilling.

A total of 251 holes for 78,955m has been drilled at Adina to May 2024 (refer Appendices) and it is anticipated almost 100,000m of drilling will have been completed by the end of 2024. Drilling at Adina is currently testing extensions to mineralisation to the north, west and east of drilling previously undertaken, following the success of step-out drilling to date. Drilling is also planned to test targets defined by geophysical surveys outside the known 3.1km strike of lithium mineralisation (refer to Figure 2), including spodumene pegmatite bodies within approximately 1 km either side to the east and west of Adina Main.

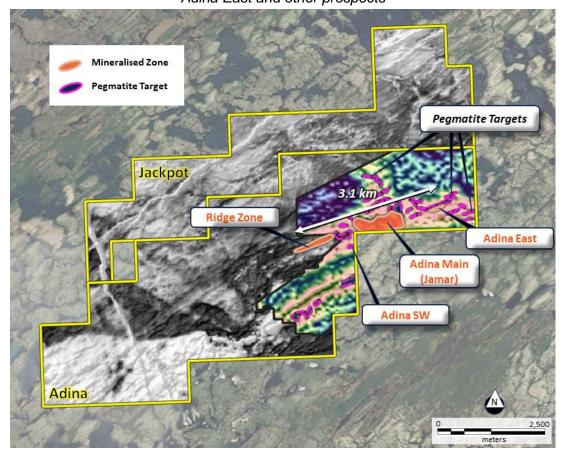


Figure 2. Adina Lithium Project highlighting Adina Main, Adina East and other prospects

. .

³ "Main Zone extended to 2.11km by systematic drilling at Adina" ASX Announcement 5 March 2024.

Commentary on the Adina Mineral Resources

The updated MRE for Winsome's 100%-owned Adina Lithium Project is shown below in Table 1 and is classified in the Indicated and Inferred category. The MRE is defined as an open pittable resource with mineralisation outcropping at surface and 48.7Mt at 1.20% Li₂O occurring within 150m of surface (vertical depth, refer Table 2). The MRE is reported within a conceptual pit shell (Figure 3) generated using appropriate cost and pricing parameters (**RPEEE shell**). This is currently accepted as the best practise to satisfy the Reasonable Prospects for Eventual Economic Extraction (**RPEEE**) criteria under the JORC Code. Cross sections and plans illustrating the MRE are presented in Figures 5 to 9.

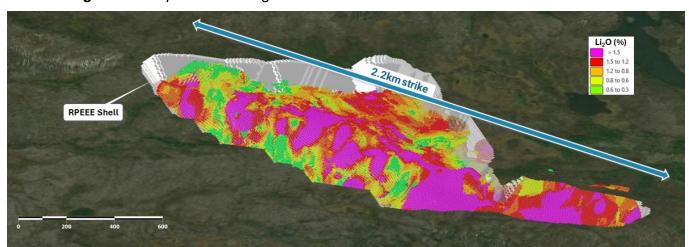


Figure 3. Oblique view looking NW of Adina Mineral Resource and RPEEE Pit Shell

Table 1. Mineral Resource Statement for the Adina Lithium Deposit

Zone		Indicated	i		Inferred			Total	
	Tonnes (Mt)	Li ₂ O (%)	Contained LCE (Mt)	Tonnes (Mt)	Li ₂ O (%)	Contained LCE (Mt)	Tonnes (Mt)	Li₂O (%)	Contained LCE (Mt)
MZ	28.4	1.19	0.84	8.7	1.39	0.26	37.1	1.23	1.10
FWZ	33.0	1.10	0.90	7.8	0.98	0.19	40.8	1.08	1.08
Total	61.4	1.14	1.73	16.5	1.19	0.49	77.9	1.15	2.21

Note: Refer to this announcement's Appendices for drilling data and other information prescribed by the JORC Code.

The Mineral Resource Estimate was completed by an external consultant in collaboration with the Company's technical team. Geological interpretation and domaining has been carried out based on all available drillhole data. Assays from 186 drillholes representing 57,756 metres of drilling were used to inform the Mineral Resource from the 251 holes completed at Adina to date. All drilling results used in the MRE are included as Appendix 2 and shown on Figures 6 and 7. Drilling is ongoing at Adina with results from current and planned drilling to inform further MRE updates which are currently anticipated by Q1 2025.

Table 2. Adina Mineral Resource by elevation

Vertical Depth From Surface	•	neral Resource + Inferred)
(m)	Tonnes (Mt)	Grade (Li₂O%)
0 – 50	22.7	1.30
50 – 100	31.8	1.27
100 – 150	48.7	1.20
150 – 200	62.7	1.17
200 – 250	71.6	1.17
250 – 300	76.9	1.15

Interpretation has been built based on explicit and implicit modelling of pegmatite dykes. The Main Zone (**MZ**) and Footwall Zone (**FWZ**) were modelled separately as shown on Figure 5. Geostatistical analysis, variography and estimation was carried out as detailed below.

Table 3 and Figure 4 details the tonnage and lithium grade reported at various cut off grades to illustrate the sensitivity of the maiden Mineral Resource to cut-off grade. The MRE upgrade has been quoted at the same cut-off grade as the 2023 MRE based on consideration of the grade-tonnage data, likely mining methods, conceptual mining studies completed on the previous MRE and data from analogous peer operations (comparable deposit style, commodity, project maturity and cost jurisdiction).

Table 3. Cut-off grade sensitivity analysis for the Adina Mineral Resource

Cut Off Grade	To	otal	Indi	cated	Infe	erred
	Tonnes (Mt)	Grade (Li ₂ O%)	Tonnes (Mt)	Grade (Li ₂ O%)	Tonnes (Mt)	Grade (Li ₂ O%)
% Li ₂ O	≥ Cut-off	≥ Cut-off	≥ Cut-off	≥ Cut-off	≥ Cut-off	≥ Cut-off
0.2	88.9	1.07	71.3	1.05	17.5	1.15
0.4	86.5	1.09	70.8	1.06	17.3	1.16
0.5	83.1	1.12	69.2	1.07	17.1	1.16
0.6	77.9	1.15	61.4	1.14	16.5	1.19
0.7	70.7	1.20	55.6	1.20	15.1	1.23
8.0	62.7	1.26	49.3	1.25	13.4	1.30
1.0	46.0	1.39	36.0	1.39	10.0	1.43
1.2	30.9	1.54	24.4	1.53	6.6	1.60
1.4	18.6	1.71	14.5	1.69	4.2	1.79

Note: This table should not be interpreted as a mineral resource statement. The data is presented to demonstrate the sensitivity of the Mineral Resource to various cut-off grades. The selected cut-off grade for the base case is $0.6\% \text{ Li}_2\text{O}$.

90 2.0 1.8 Tonnes (Mt) 1.6 60 1.4 50 1.2 40 1.0 30 0.8 20 0.6 10 0.4 0.2 Cut Off Grade (Li₂O%) — Grade (Li2O%) → Tonnage (Mt)

Figure 4. Grade – Tonnage curve showing sensitivity analysis of MRE to cut off grade

Comparison with 2023 Mineral Resource Estimate

Figure 5 and Tables 4 and 5 compare the 2024 Mineral Resource Estimate updated to the previous 2023 Mineral Resource Estimate⁴. The improvement in tonnage is due to the increased strike length of mineralisation drilled at a systematic spacing to support a Mineral Resource. The grade improvement is believed to arise from a combination of infill drilling increasing the proportion of high-grade assays within the wireframes and improved definition of the internal waste zones aiding in removing unmineralised material from the resource blocks.

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

^{4 &}quot;Globally significant MRE of 59MT at Adina Lithium Project" ASX Announcement 11 December 2023

1.19%

1.19%

1.12%

1.14%

Dec-23

May-24

Indicated

Inferred

Figure 5. Change in MRE tonnage from 2023 MRE to 2024 MRE.

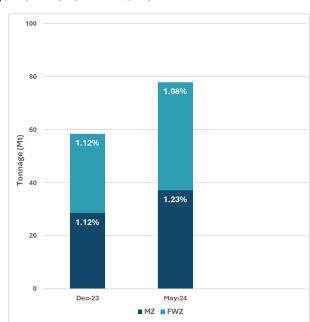


Table 4: Comparison of Mineral Resources for the Adina Lithium Project

Zone	Current	Model	Previous	s Model	Variance					
	Tonnes (Mt)	Li ₂ O (%)	Tonnes (Mt)	Li ₂ O (%)	Tonnes (Mt)	%	Li ₂ O (%)	%		
Main	37.1	1.23	28.6	1.12	8.5	+27%	+0.13	+10%		
Footwall	40.8	1.08	29.9	1.12	10.9	+36%	-0.02	-4%		
Total	77.9	1.15	58.5	1.12	19.4	+33%	+0.03	+3%		

Table 5: Comparison of Measured & Indicated⁵ Mineral Resources for the Adina Lithium Project

Zone	Current	Model	Previous	s Model		Variance					
	Tonnes (Mt)	Li ₂ O (%)	Tonnes (Mt)	Li ₂ O (%)	Tonnes (Mt)	%	Li ₂ O (%)	%			
Main	28.4	1.19	-	-	28.4	100%	1.19	100%			
Footwall	33.0	1.10	-	-	33.0	100%	1.10	100%			
Total	61.4	1.14	58.5	1.12	61.4	100%	1.14	100%			

Project Studies

With the completion of the MRE, update work has commenced on pit optimisation studies which will lead into detailed scheduling, planning and mine design. The mining schedule will inform studies currently underway to evaluate production scenarios with and without the repurposing of the Renard processing plant and associated infrastructure for lithium concentrate production.

⁵ No material has been classified in the Measured category in the 2024 MRE

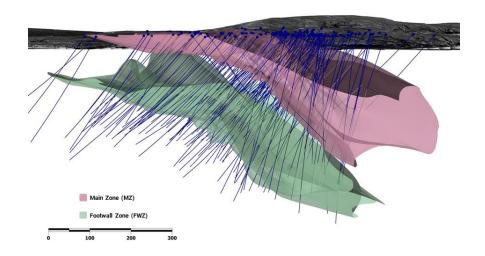
The current Renard operation includes several processing stages which could be utilised for a lithium processing operation, including the crushing, ore sorting and dense media separation (**DMS**) circuits, as well as existing permits and approvals for processing and infrastructure operation which could potentially simplify and de-risk the permitting process for Adina.

The suitability of Renard for processing of mineralised material from Adina, and the potential benefits and risks versus construction of a purpose-built lithium processing plant at a green fields site at Adina will be investigated in the forthcoming studies. Results of the metallurgical test work programme completed on core samples from 2023 will be used to develop process flowsheets for both a Greenfield and a Brownfield project study scenario which will support design and costings for process infrastructure.

Key Appointments to Project Team

Winsome is pleased to announce the appointment of Kim-Quyen Nguyên as Vice President for Projects. Ms Nguyên has over 16 years of experience in engineering, operations, and project management, including previous roles as Project Manager / Project Director for Osisko Mining. She has led numerous NI 43-101 technical studies into projects across Canada and led the recent studies on the Windfall Project, located in the Eeyou-Istchee James Bay region of Québec. She holds a Bachelor's Degree in Material Engineering from the Polytechnique Montréal, an MBA from Université Laval and currently serves as Chair of the Board of the National Canadian Mineral Processors (CMP), a Technical Society of the Canadian Institute of Mining, Metallurgy and Petroleum.

Winsome has also secured the services on a consulting basis of Mr Walter Mädel, an expert in hard rock lithium processing with extensive and relevant experience in the design, commissioning, operation and repurposing of DMS plants. Mr Mädel has been involved with the Mt Cattlin, Pilgangoora (Altura) and Goulamina lithium projects in both a study capacity (test work, design and costing) and an operational capacity (commissioning, operation and process improvements). Mr Mädel will work with Canadian based consultants to optimise the current metallurgical test work programme as well as with DRA in the evaluation and design of the proposed modifications to the Renard process plant.


Summary of Resource Estimation Parameters

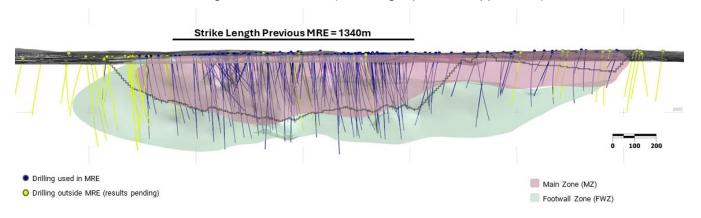
As per ASX Listing Rule 5.8 and the 2012 JORC Code, a summary of the material information used to estimate the Mineral Resource is detailed below. Further details can be found in the Appendices.

Geology & Geological Interpretation:

The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite bodies are oriented sub-parallel to the general strike of the host rocks. The pegmatites are emplaced into host rocks of the Trieste Formation comprising amphibolite grade intermediate to mafic metavolcanics with sparse iron formations interlayered. Wireframes for the resource model were based on explicit and implicit modelling of pegmatite bodies. Two distinct pegmatite swarms are present at Adina, the Main Zone and Footwall Zone, with each zone likely comprised of multiple pegmatite dykes. Detailed logging, mineralogy and lithogeochemical data will be used to try and distinguish these in future modelling. In this resource model, the Main and Footwall Zone has been modelled as two single pegmatite bodies. Occurrences of internal waste, being pegmatites with lithium content below nominal cut-off or thin rafts of basalt which were continuous along strike or dip, were subdomained as 'internal' waste volumes within the pegmatite body and removed from the resource model. A grade shell to domain all material above 0.15% Li₂O was used to remove internal waste not captured in the internal waste wireframes.

Figure 6: Oblique view looking northeast showing wireframes and drilling

Drilling, Sampling and Sub-Sampling Techniques:


Drilling has been completed from surface with all holes completed using diamond core drilling. All drilling used in the model has been carried out by Winsome, with no historical drilling by other parties having occurred at Adina Main. A total of 186 drillholes representing 57,756 metres of drilling were used in the model. Three drillholes did not provide assay data since all core from these holes was submitted for metallurgical test work, however lithological data from these holes was used in the geological modelling.

Drillhole collars have been located with a Trimble GPS with a \pm 1m accuracy. The actual locations of all the drillholes were surveyed after drilling with a differential global positioning system (DGPS) with \pm 20cm accuracy. Downhole surveys were taken every 30m down the hole, with recent drillholes surveyed using a gyro. All coordinates reported are in UTM format using the NAD83 datum (zone 18N). Topographic coverage was provided by digital elevation data from a LIDAR survey completed in 2022 at a 50cm grid resolution.

Core recoveries are generally excellent save for in fault zones where broken core is recovered and in the overburden/till zone above bed rock. Recoveries over the entire drilling programme average over 95%.

Sampling is done by trained personnel following industry standard sampling procedures. Diamond core was split down its centre line into two halves by means of core cutter. Diamond core (DD) sampling is predominantly 1m downhole intervals, which are broken at major mineralisation or lithological contacts. The sample security is well established with samples being transported by a supply truck directly to the laboratory in Val d'Or.

Figure 7: Long Section of Adina Main showing interpreted pegmatite zones (wireframes) and drilling used in the MRE (all drilling reported in Appendix 2)

Sample Analysis:

Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. The laboratories used, SGS, AGAT and MSA, are all internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements.

Samples are submitted for multi-element ICP analysis by SGS, AGAT and MSA Laboratories which is an appropriate technique for high-grade lithium analysis. Sodium Peroxide Fusion is used followed by combined ICP-AES and ICP-MS analyses (56 elements). Li is reported by the lab and was converted to Li₂O for estimation using a factor of 2.153. External laboratory checks are currently in progress with samples for check analysis.

Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4kg), duplicates sampled in the field and pulp duplicates at the lab. Standards and blank samples were submitted at a combined rate of approximately 10%, with duplicates and repeat assay determinations submitted at a rate of approximately 5%.

Estimation Methodology:

Grade estimation using Ordinary Kriging (OK) was undertaken using Surpac software. Detailed statistical and geostatistical investigations have been completed on the captured estimation data set (1m samples). This includes exploration data analysis, boundary analysis and grade estimation trials. The variography applied to grade estimation has been generated using Snowden Supervisor. These investigations have been completed on the ore domain and above-ore domain separately. Kriging Neighbourhood Analysis (KNA) was also conducted in Snowden Supervisor in various locations on the ore domain to determine the optimum block size, minimum and maximum samples per search and search distance. Li₂O content and density was estimated using parent cell estimation for pegmatite blocks, with density being assigned by lithology for waste blocks. Drill hole data was coded using three dimensional domains reflecting the geological interpretation. One metre composited data was used to estimate the domains. The domains were treated as hard boundaries and only informed by data from the domain. A parent cell size of 10m E by 10m N by 5m RL was selected, which was sub-blocked down to 5m E by 5m N by 2.5m RL (to ensure adequate volume representation).

WINSOMERESQUECES

The search passes for the estimation run used an ellipsoid oriented along the strike of the pegmatite zones with a minimum of 7 samples and a maximum of 14 samples and distances of 1/4, 1/2 and 1 times the variogram range (183m).

Mining and Metallurgical Methods and Other Factors:

The resource model assumes open cut mining is completed and a moderate level of mining selectivity is achieved in mining. The difference in colour between the pegmatites and the country rock supports the practicality of this assumption. It has been assumed grade control will be applied to ore/waste delineation processes to ensure adequate coverage of the mineralisation zones. Pit optimisations were completed on Indicated and Inferred material using costs derived from prevailing costs at similar operations at a spodumene price of US\$2,000/t to satisfy RPEEE criteria. The spodumene price is based on a combination of recent pricing and the upper end of long term consensus forecasts prepared for the Company. The conservative cut off grade used for the resource reflects the fact the mining studies are in progress.

Metallurgical test work has been completed on samples from Adina⁶ which confirms the ability to produce concentrates with acceptable specifications (lithium grade and deleterious elements) with excellent lithium recoveries. The performance and results from test work to date are similar to other lithium projects in development in Quebec. The findings from the metallurgical test work programmes are being incorporated into the current project studies and no additional modifying factors were required to be applied in the MRE. No assumptions have been made regarding metallurgical factors other the above.

Bulk density measurements were completed on drill core from the 2022 and 2023 drill programmes by a geological contractor. A total of 136 measurements were taken, excluding QA/QC samples including 83 pegmatite samples. A regression formula of 0.06914*Li₂O+2.62721 was derived based on the corresponding Li₂O assays for each sample measured and has been used to estimate the SG for the pegmatite blocks in the MRE.

Classification & Cut-off Grade:

The cut-off grade for reporting of Mineral Resources at Adina is 0.6% Li₂O, unchanged from the 2023 MRE. This was based on consideration of the grade-tonnage data, likely mining methods, conceptual mining studies completed on the previous MRE and data from analogous peer operations (comparable deposit style, commodity, project maturity and cost jurisdiction). Mineral Resources are classified as Indicated and Inferred to appropriately represent confidence and risk with respect to data quality, drill hole spacing, geological and grade continuity and mineralisation volumes. Classification and cut-off grade also used criteria in line with industry peers. The drilling, surveying and sampling undertaken, and the analytical methods and quality controls used, are appropriate for the style of deposit under consideration.

This announcement is authorised for release by the Board of Winsome Resources Limited.

For further information please contact:

INVESTORS

Chris Evans - Managing Director Winsome Resources

administration@winsomeresources.com.au

MEDIA

Josh Nyman - General Manager Spoke

josh@hellospoke.com.au

+61 413 243 440

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

⁶ "Exceptional Results from Metallurgical Testing" ASX Announcement 1 June 2022 with additional information 8 June 2022. "Exceptional Metallurgical Test work Results from Adina" ASX Announcement 20 February 2024.

ABOUT WINSOME RESOURCES

Winsome Resources (ASX: WR1) is a Perth-based, lithium focused exploration and development company with four project areas in Quebec, Canada. All of Winsome's projects – Adina, Cancet, Sirmac-Clappier and Tilly are 100% owned by the Company. During 2023 Company acquired a further 47km² of claims at the Tilly Project, located near Adina, and 29 claims of the Jackpot Property, immediately north of Adina.

The most advanced of Winsome's projects - Adina and Cancet, provide shallow, high grade lithium deposits and are strategically located close to established infrastructure and supply chains.

The Company recently acquired an option to purchase the Renard Mine, a mining and processing site located circa 60 kilometres south (in a straight line) of Adina. The Renard Mine has a range of mineral processing and operating permits which may advance Winsome's pathway to lithium production as well as process plant consisting of dense media separation, upfront jaw, cone, high-pressure grinding rolls and ore sorting circuits necessary for spodumene concentrate production. During the option period Winsome will confirm the feasibility of repurposing Renard for lithium production, as well as determining the optimal transaction structure for the acquisition.

In addition to its impressive portfolio of lithium projects in Quebec, Winsome Resources owns 100% of the offtake rights for lithium, caesium and tantalum from Power Metals Corp (TSXV:PWM) Case Lake Project in Eastern Ontario, as well as a 19.6% equity stake in PWM. The Company recently divested Decelles and Mazerac, two early stage projects located near the Quebec mining town of Val-d'Or, to PWM in exchange for an increased shareholding.

Winsome is led by a highly qualified team with strong experience in lithium exploration and development as well as leading ASX listed companies. **More details:** www.winsomeresources.com.au

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Winsome. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory, including environmental regulation and liability and potential title disputes.

Forward-looking statements in this document are based on the Company's beliefs, opinions and estimates of Winsome as of the dates the forward-looking statements are made, and no obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this announcement relating to Exploration Results, Sampling Techniques, and Data Quality underpinning the Mineral Resource is based on, and fairly represents, information and supporting documentation prepared by Mr Antoine Fournier, VP Exploration of Winsome Resources Ltd. Mr Fournier is a member of the Quebec Order of Geologists (OGQ #0516), a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fournier consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

The information in this announcement relating to the Estimation and Reporting of Mineral Resources is based on information, and fairly represents, information and supporting documentation prepared by Mr Kerry Griffin. Mr Griffin is a consultant to the Company, a Member of the Australian Institute of Geoscientists, and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Griffin consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

PREVIOUSLY ANNOUNCED EXPLORATION RESULTS

Winsome confirms it is not aware of any new information or data which materially affects the information included in the original market announcements referred to in this announcement. Winsome confirms the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

-ends-

Figure 8: Overview of Adina Main showing interpreted pegmatite zones (wireframes) and drilling used in the MRE (all drilling reported in Appendix 2). Also shown are the locations of cross sections shown as Figures 9 and 10.

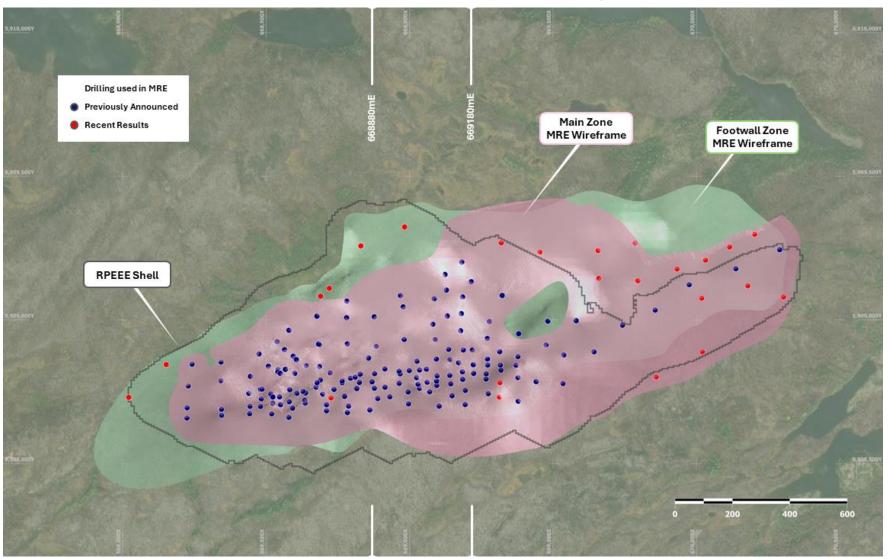
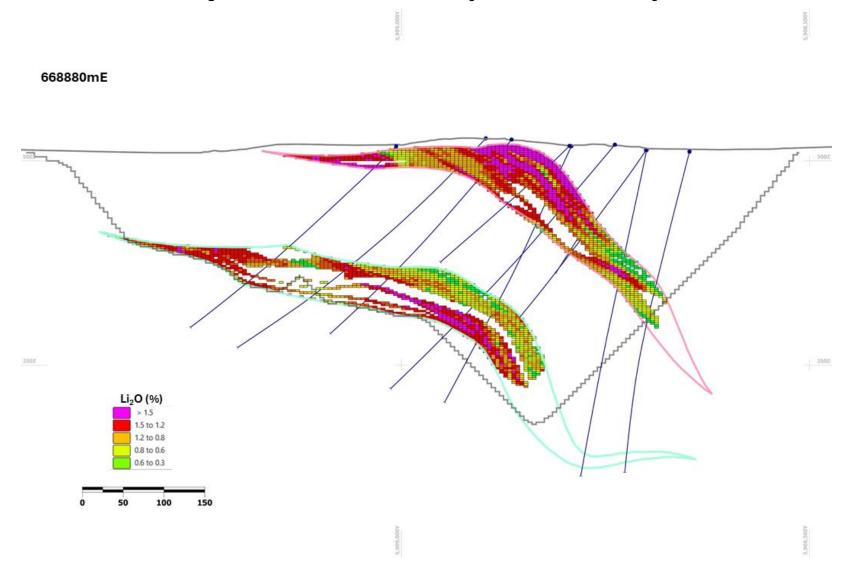
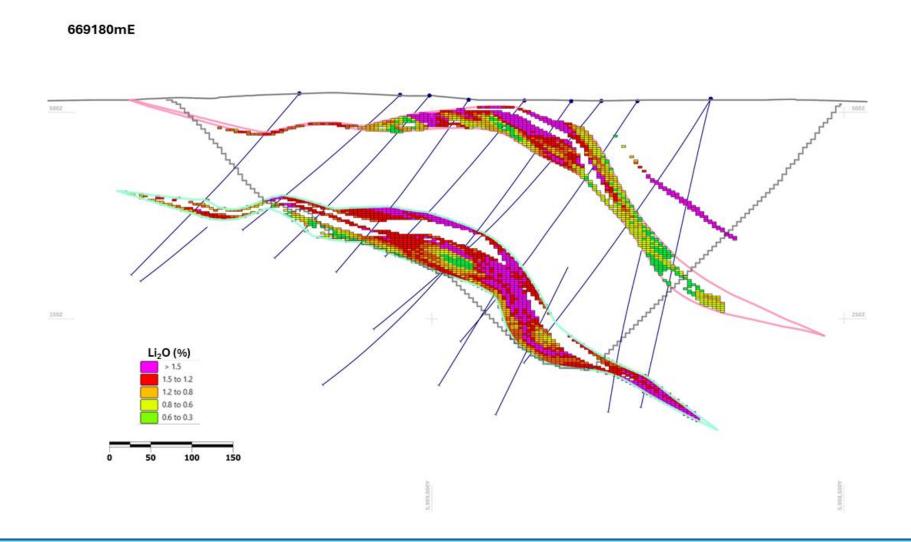




Figure 9: Cross Section 668880mE showing MRE, wireframes and drilling

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

Figure 10: Cross Section 669180mE showing MRE, wireframes and drilling

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

VINSOMERESQUECES

Appendix 1. Mineral Resources at the Adina Lithium Project stated under the JORC Code

Zone	Tonnes (Mt)	Indicated Li ₂ O (%)	Contained LCE (Mt)	Tonnes (Mt)	Inferred Li ₂ O (%)	Contained LCE (Mt)	Tonnes (Mt)	Total Li ₂ O (%)	Contained LCE (Mt)
MZ	28.4	1.19	0.84	8.7	1.39	0.26	37.1	1.23	1.10
FWZ	33.0	1.10	0.90	7.8	0.98	0.19	40.8	1.08	1.08
Total	61.4	1.14	1.73	16.5	1.19	0.49	77.9	1.15	2.21

Refer to Appendices 2 to 4 for drilling data and other information prescribed by the JORC Code.

ASX:WR1 I FSE:4XJ I QTCQB:WRSLF

Appendix 2: Drillhole Data and Significant Drillhole Lithium Intercepts used in MRE. ⁷.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-001	668477	5908772	511	-45	135	3.0	66.1	63.1	1.35	Main
	including					3.0	11.0	8.0	1.61	Main
	including					23.0	39.0	16.0	2.16	Main
	including					60.4	66.1	5.7	2.37	Main
	including					73.1	85.8	12.7	1.89	Main
	further includir					73.1	77.2	4.1	4.19	Main
AD-22-002	668503	5908851	511	-45	135	6.0	11.0	5.0	0.60	Main
AD-22-003	668555	5908901	513	-45	135	85.0	89.0	4.0	2.08	Main
AD-22-004	668513	5908739	512	-45	135	87.1	90.2	3.1	1.50	Main
						93.0	96.0	3.0	1.18	Main
AD-22-005	668542	5908812	513	-45	135	2.3	109.9	107.6	1.34	Main
	including					2.3	23.0	20.7	1.52	Main
	including					41.0	71.0	30.0	2.21	Main
AD-22-005A	668542	5908812	513	-45	315	4.6	28.5	23.9	1.52	Main
	including					4.6	18.5	13.9	2.04	Main
						78.6	84.4	5.8	1.59	Main
AD-22-006	668596	5908861	515	-45	135	2.2	57	54.8	1.14	Main
	including					2.2	8	5.8	1.88	Main
	including					10	20	10.0	1.69	Main
	including					27	32	5.0	1.37	Main
	including					45	51	6.0	1.54	Main
						66.2	78	11.8	0.55	Main
AD-22-006B	668596	5908861	515	-45	315	1	11	10.0	0.89	Main
						34.1	37.45	3.35	1.46	Main

⁷ Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 3m thickness and widths including up to 7m internal dilution.

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	Zonc
AD-22-007	668430	5908809	510	-45	135	88.6	105.6	17.0	1.56	Main
	including					98.6	105.6	7.0	2.72	Main
						141.9	151.4	9.5	0.69	Main
						232.8	287.0	54.2	1.04	Main
	including	1				232.8	238.8	6.0	2.14	Main
	including					249.0	260.0	11.0	1.14	Main
	including					275.3	287.0	11.7	1.77	Main
						324.6	343.6	19.0	0.88	Main
	including					324.6	329.6	4.6	2.01	Main
AD-22-008	668460	5908892	510	-45	135	41.9	65.7	23.8	0.88	Main
	including					41.9	48.9	7.0	1.31	Main
	including					51.9	54.9	3.0	1.34	Main
	including					60.5	63.5	3.0	1.89	Main
AD-22-009	668512	5908942	511	-45	135	33.9	37.9	4.0	0.26	Main
AD-23-010	668441	5908641	511	-55	360	106.3	133.0	26.7	1.01	Main
	including					111.4	116.0	4.6	2.11	Main
						210.5	214.5	4.0	1.01	FW
						231.9	251.2	19.3	0.91	FW
	including					237.0	240.8	3.8	2.20	FW
	including					245.5	249.5	4.0	1.39	FW
						271.3	278.7	7.4	0.85	FW
AD-22-011	668687	5908776	517	-45	320	13.6	37.0	23.4	0.88	Main
	including					28.0	37.0	9.0	1.70	Main
						51.0	72.0	21.0	0.82	Main
	including					51.0	66.0	15.0	1.00	Main
						94.8	102.2	7.4	0.53	Main
AD-23-012	669381	5908956	520	-45	350	189.7	194.7	5.0	1.18	FW

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
поје ју	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						217.7	236.0	18.3	1.04	FW
AD-23-013	669482	5908995	520	-45	338	201.3	205.3	4.0	0.84	FW
						224.2	231.9	7.7	0.56	FW
AD-23-014	669478	5908900	522	-60	350	26.2	39.8	13.6	1.24	Main
AD-23-015	669560	5908732	521	-50	330	80.3	81	0.7	2.01	Main
						93.7	95	1.3	2.43	Main
						390.0	395.4	5.4	0.97	FW
						448.6	449.3	0.7	1.36	FW
AD-23-016	669583	5908994	522	-55	328	6.2	14.5	8.3	1.23	Main
						189	193.4	4.4	1.01	FW
						216.8	222	5.2	0.80	FW
AD-23-017	669877	5908995	529	-45	330	65.3	77.6	12.3	0.95	Main
AD-23-018	668829	5909258	510	-60	335			NSI		
AD-23-019	668829	5909261	510	-45	335			NSI		
AD-23-020	670048	5909022	530	-45	330	88.9	96.5	7.6	1.39	Main
AD-23-021	669186	5908747	513	-55	360	77.0	99.4	22.4	1.09	Main
						251.2	286.6	35.4	1.98	FW
AD-23-022	669174	5908833	514	-55	360	35.4	77	41.6	1.08	Main
	including					35.4	42.2	6.8	1.97	Main
	including					52.1	60.8	8.7	1.80	Main
						191.4	197.0	5.6	1.27	FW
						215.3	232.6	17.3	1.72	FW
						252.6	260.8	8.2	1.43	FW
AD-23-023	669195	5908663	517	-75	360	129.3	134.5	5.2	4.03	Main
						209.5	214.0	4.5	1.00	Main
						345.3	365.6	20.4	1.62	FW
AD-23-024	669271	5908856	515	-45	360	8.9	70.1	61.2	1.37	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
noie iD	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	including					29.0	36.0	7.0	2.10	Main
	including					62.0	70.1	8.1	2.60	Main
						217.1	224.4	7.3	1.35	FW
						239.0	242.6	3.6	1.25	FW
						254.0	259.2	5.2	2.30	FW
AD-23-024A	669271	5908856	515	-50	360	9.0	21.4	12.4	1.01	Main
						32.4	60.0	27.6	1.59	Main
	including					32.4	49.0	16.6	1.97	Main
						198.1	208.3	10.2	1.18	FW
						227.3	260.6	33.3	1.24	FW
	including					249.1	260.6	11.5	1.89	FW
AD-23-025	668898	5908704	514	-55	340	110.5	140	29.5	1.16	Main
	including					114.5	121.5	6.0	2.21	Main
						157.2	160.3	3.1	1.33	Main
						255.5	275.7	20.2	0.91	FW
						290.0	317.4	27.4	1.11	FW
	including					290.0	312.0	22.0	1.26	FW
AD-23-026	668898	5908704	514	-78	340	135.5	171.0	35.5	0.89	Main
	including					149.0	163.0	14.0	1.46	Main
AD-23-027	668827	5908751	525	-50	350	57	83.4	26.4	2.04	Main
						116.7	142.2	25.5	1.93	Main
						245.7	255.7	10.0	1.65	Main
						271.3	313.0	41.7	1.03	FW
	including					271.3	290.8	19.5	1.32	FW
	including					298.0	306.0	8.0.	1.45	FW
						375.6	379.7	4.1	1.23	FW
AD-23-028	668735	5908748	518	-50	350	35.2	45.2	10	2.09	Main

WINSOMERESOURCES

II.I. IB	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
			, ,			95.7	104.0	8.3	0.99	Main
						253.0	276.2	23.2	1.02	FW
						284.2	294	9.8	0.46	FW
AD-23-029	669002	5908666	514	-55	350	139.0	170.0	31.0	1.45	Main
	including					140.0	150.0	10.0	2.32	Main
						272.0	277.0	5.0	1.24	FW
						302.8	312.0	9.2	0.94	FW
						329.0	356.9	27.9	1.85	FW
AD-23-030	668789	5908668	512	-60	350	161.2	178.5	17.3	0.46	Main
	including					174.4	178.5	4.1	1.24	Main
						204.6	210.5	5.9	0.67	Main
AD-23-031	669002	5908666	514	-75	350	158	216.9	58.9	0.37	Main
	including					171.0	198.4	27.4	0.50	Main
		further including				191.3	198.4	7.1	0.84	Main
	including					214.0	216.9	2.9	0.81	Main
AD-23-032	669381	5908756	520	-50	350	75.7	76.7	1.0	2.41	Main
						278.6	290	11.4	1.23	FW
						312.45	323.7	11.3	1.14	FW
AD-23-033	668521	5908640	512	-75	360	172.7	178.0	5.3	1.41	Main
						378.2	381.2	3.0	1.11	FW
AD-22-034	668852	5908687	517	-45	340	112.9	129.9	17.0	1.32	Main
	including					112.9	117.9	5.0	1.93	Main
	including					121.9	128.9	7.0	1.67	Main
						156.9	164.4	7.5	1.28	Main
AD-22-035	668634	5908726	519	-45	315	41.6	101	59.4	1.26	Main
	including					41.6	63	21.4	1.71	Main
	including					78	101	23.0	1.49	Main

WINSOMERESOURCES

Hala ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-036	668687	5908776	517	-45	360	28	83.5	55.5	1.35	Main
	including					49	58	9.0	2.40	Main
	including					62	71	9.0	1.51	Main
	including					74	83.5	9.5	1.17	Main
						101.8	107.7	5.9	0.36	Main
						227.7	234.5	6.8	0.76	Main
AD-22-037	668702	5908651	515	-55	315	162.3	190.7	28.4	1.12	Main
	including					162.3	179.7	17.4	1.48	Main
						207.7	213.1	5.4	1.75	Main
AD-22-039	668702	5908651	515	-45	360	135	142	7.0	0.59	Main
						154	160	6.0	2.37	Main
						166	170.6	4.6	0.97	Main
AD-23-038A	668789	5908668	511	-60	350	152	162	10.0	1.17	Main
						303.4	337.5	34.1	0.69	FW
	including					306.4	314.4	8.0	1.00	FW
	including					318.8	323.6	4.8	1.47	FW
AD-22-039	668702	5908651	515	-45	360	135	142	7.0	0.59	Main
						154	160	6.0	2.37	Main
						166	170.6	4.6	0.97	Main
AD-23-040	668769	5908781	519	-45	360	49.9	92.7	42.8	1.71	Main
						244.2	255.5	11.3	1.38	FW
						270.6	294.1	23. 5	1.15	FW
	including					270.6	278.7	8.1	1.55	FW
	including					283.7	294.1	10.4	1.32	FW
AD-22-041	668872	5908797	520	-45	360	26.3	71	44.7	1.56	Main
	including					26.3	41.4	15.1	2.00	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	including					48	66	18.0	1.92	Main
AD-22-042	668968	5908803	520	-45	340	32.7	80.1	47.4	1.64	Main
	including					32.7	47.3	14.6	2.15	Main
	including					55.1	78.1	23.0	1.78	Main
						100.4	104.65	4.25	1.39	Main
AD-22-043	670003	5909088	531	-45	340	62.3	74.5	12.2	1.50	Main
	including					62.3	69.5	7.2	2.08	Main
AD-23-044	670165	5909126	533	-45	340	83.4	89.4	6.0	1.77	Main
	including					83.4	85.4	2.0	3.63	Main
AD-23-045	670312	5909224	533	-45	330	47.4	62.4	15.0	1.26	Main
	including					50.4	54.4	4.0	2.51	Main
AD-22-046	668968	5908803	520	-65	340	45	66	21.0	1.09	Main
	including					45	49	4.0	1.20	Main
	including					52	65	13.0	1.33	Main
						84	90	6.0	2.82	Main
AD-23-047	669031	5908845	520	-45	340	17.8	64.25	46.45	1.73	Main
						84.1	87.0	2.9	1.52	Main
						215.5	241.5	26.0	1.32	FW
	including					219.5	229.2	9.7	2.32	FW
						257.7	263.9	6.2	1.76	FW
						281.7	293.1	11.4	1.71	FW
						314.6	320.0	5.4	0.80	FW
						410.2	417.7	7.5	1.28	FW
AD-23-048	668702	5908651	515	-75	0	198.7	201.7	3.0	3.32	Main
						208	211	30.0	1.35	Main
AD-23-049	669381	5908756	520	-70	350	130.5	133.5	3.0	1.16	Main
						142.6	145.6	3.0	1.43	Main

WINSOMERESOURCES

Hala ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-050	668789	5908668	512	-75	350	181.5	184.5	30.0	1.14	Main
						307.4	317.9	10.5	0.90	FW
AD-23-051	668769	5908781	519	-75	0	15.9	31.1	15.2	1.29	Main
						70.5	75.5	5.0	1.50	Main
						219.9	230	10.1	2.44	FW
						260.6	281.6	21.0	1.10	FW
AD-23-052	668566	5908827	518	-60	360	4.3	13.5	9.2	1.31	Main
						47.2	53.2	6.0	1.04	Main
						68.6	75.2	6.6	1.00	Main
						166.3	168.35	2.0	2.52	FW
						177.3	180.6	3.3	1.78	FW
						207.5	212	4.5	1.15	FW
						231.6	234.3	2.7	0.94	FW
AD-23-053	669034	5908748	512	-45	360	73.5	115.2	41.7	0.83	Main
						80.6	99.2	18.6	1.16	Main
AD-23-054	669090	5908854	512	-45	360	20.2	64.2	44.0	0.48	Main
						200.7	214.7	14.0.	1.29	FW
AD-22-055	668944	5908718	512	-55	330	95.5	105.5	10	1.55	Main
AD-23-056	670203	5909041	533	-45	340	114.8	119.7	4.9	1.36	Main
AD-23-057	669034	5908748	512	-65	360	66.5	99.1	32.6	1.34	Main
	including					66.5	78.2	11.7	2.27	Main
	including					86.9	94.9	8.0	1.61	Main
AD-23-058	669381	5908670	517	-70	350	348.0	357.0	9.0	0.69	FW
AD-22-059	668944	5908718	512	-82	330	123	167	44.0	1.08	Main
	including					123	133	10.0	1.37	Main
AD-23-060	669034	5908748	512	-85	240	57.5	62.0	4.5	3.59	Main
						126.0	160.0	34.0	1.68	Main

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
		,			,	139.2	158.0	18.8	2.42	Main
AD-23-061	668600	5908813	519	-70	360	8.8	45	36.2	1.27	Main
	including					8.8	13.2	4.4	2.00	Main
						216.55	224.9	8.35	1.34	FW
AD-23-062	668641	5908834	517	-50	360	38.7	40.7	2.0	1.09	Main
						54.9	57.0	2.1	0.80	Main
						205.1	209.8	4.7	0.87	FW
						238.5	249.6	11.1	0.82	FW
						246.85	249.6	2.75	2.13	FW
AD-23-063	670366	5908963	530	-45	330	182.9	185.1	2.2	2.14	Main
AD-23-064	668689	5909085	512	-60	335			NSI		
AD-23-065	668687	5908825	516	-45	360	13.3	51.4	38.1	1.59	Main
	including					22.0	27.0	5.0	3.20	Main
						72.4	77.5	5.1	0.69	Main
						224.2	227.2	3.0	1.15	FW
						278.8	279.8	1.0	1.07	FW
AD-23-066	670095	5908783	520	-45	330	179.0	181.4	2.4	1.68	Main
AD-23-067	669920	5908688	515	-50	330	190.5	191.9	1.4	0.59	Main
AD-23-068	669102	5908677	517	-82	0	111	114	3	1.79	Main
						236	250	14	0.96	Main
	including					236	246	10	1.10	Main
						364.55	369.25	4.7	2.04	FW
AD-23-069	668723	5908806	516	-50	360	19.4	65.0	45.6	1.70	Main
						105.5	108.3	2.8	1.02	Main
						198.5	202.1	3.6	1.27	FW
						214.3	216.9	2.6	0.82	FW
						226.7	233.0	6.3	2.25	FW

WINSOMERESOURCES

II.I.ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
			, ,			257.0	270.7	12.7	1.70	FW
AD-23-070	668780	5909054	516	-50	360	21.95	25.85	3.9	0.97	Main
						155.15	158	2.85	1.05	FW
AD-23-071	669094	5908773	512	-85	360	59	75	16.0	1.41	Main
AD-23-072	669094	5908773	512	-65	360	43.4	62	18.6	2.25	Main
						83.5	103.5	20.0	0.74	Main
						236.1	240.1	4.0	1.46	FW
AD-23-073	669094	5908773	512	-45	360	49.9	94	44.1	1.38	Main
	including					49.9	61.3	11.4	2.36	Main
						221.5	236.9	15.5	1.57	FW
AD-23-074	669195	5908663	517	-58	360	121.9	126.7	4.8	1.37	Main
						168.4	183.8	15.4	0.71	Main
						357.0	375.0	18.0	1.42	FW
AD-23-075	669269	5908768	516	-50	360	67.5	98.3	30.8	1.35	Main
	including					88.0	98.3	10.3	2.66	Main
						244.9	254.0	9.1	1.29	FW
						268.5	292.6	24.1	2.18	FW
AD-23-076	669269	5908768	516	-75	360	93.4	105.5	12.1	1.52	Main
						286.0	290.3	4.3	1.15	FW
AD-23-077	669270	5908672	517	-75	360	127.0	132.1	5.1	2.00	Main
						184.4	194.0	9.7	1.57	Main
						352.0	363.0	11.0	1.65	FW
AD-23-077A	669270	5908672	517	-70	360	136.8	140.0	3.2	3.17	Main
						186.5	194.8	8.3	0.66	Main
						340.9	343.9	3.0	2.03	FW
AD-23-078A	668970	5909079	522	45	340	15.5	24.5	9.0	1.63	Main
						198.8	201.4	2.6	2.14	FW

WINSOMERESOURCES

Hele ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						222.7	224.7	2.0	0.97	FW
AD-23-079	669670	5908840	525	-50	330	89.6	102.0	12.4	1.19	Main
AD-23-080	668811	5908790	521	-50	360	17.5	85.6	68.1	1.11	Main
						233.2	242.6	9.4	1.62	FW
						250.6	267	16.4	1.55	FW
AD-23-081	669462	5908746	522	-50	330	71.7	81.7	10.0	1.42	Main
						146.9	155.3	8.3	2.72	Main
						162.1	169.0	6.9	1.75	Main
AD-23-082	669117	5909149	522	-50	340	188.0	192.0	4.0	1.14	FW
AD-23-083	669281	5908956	519	-45	360	51.4	54.4	3.0	1.35	Main
						226.3	235.3	9.0	1.11	FW
AD-23-084	669685	5909105	524	-50	330	191.7	196.7	5.0	0.61	Main
AD-23-085	669084	5908977	522	-45	360	13.6	23.9	10.3	1.44	Main
						183.0	199.9	16.9	1.06	FW
						245.7	250.7	5.0	0.86	FW
AD-23-086	668981	5908938	531	-45	360	2.8	31.3	28.5	1.28	Main
						237.0	260.4	23.4	1.80	FW
						245.7	250.7	5.0	0.86	FW
AD-23-087	668827	5908806	520	-45	360	9.1	61	51.9	1.71	Main
						73.4	79.3	5.9	0.91	Main
						231.0	240.0	9.0	1.49	FW
						262.4	282.8	20.4	1.64	FW
AD-23-088	669325	5909077	521	-50	340	36.7	42.0	5.3	0.65	Main
						198.0	204.0	6.0	0.70	FW
						162.1	169.0	6.9	1.75	Main
AD-23-089	668683	5908906	518	-45	360	14.6	25.6	11.0	1.11	Main
AD-23-090	668794	5908776	522	-45	360	47.0	100.5	53.5	1.55	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
noie iD	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						260.4	270.6	10.2	1.21	FW
						293.2	308.0	14.8	1.20	FW
AD-23-091	668782	5908901	518	-45	360	15.0	39.25	24.3	1.23	Main
						55.4	60.0	4.7	1.25	Main
						209.6	213.9	4.3	1.29	FW
						246.2	256.4	10.2	1.79	FW
AD-23-092	668881	5908898	528	-45	360	16.0	54.0	38.0	1.26	Main
						229.4	235.0	5.6	1.72	FW
						290.7	293.3	2.6	0.87	FW
AD-23-093	668869	5908740	519	-50	360	69.5	110.0	40.5	1.93	Main
						249.0	260.5	11.5	0.88	FW
						275.0	300.9	25.9	1.59	FW
AD-23-094	669184	5909040	523	-45	360	188.3	197.0	8.7	1.40	FW
						234	242	8.0	2.15	FW
AD-23-095	669181	5908952	516	-55	360	14.8	37.0	22.2	1.18	Main
						159.3	185.7	26.4	1.55	FW
						206.9	214.7	7.8	1.29	FW
AD-23-096	669084	5909070	520	-45	360	6.0	13.5	7.5	0.92	Main
AD-23-097	669381	5908856	519	-45	350	31.0	42.8	11.8	0.72	Main
						53.2	59.4	6.2	1.47	Main
						218.9	223.7	4.8	1.53	FW
						260.4	277.3	16.9	1.09	FW
AD-23-098	668876	5909008	519	-45	360	9.0	26.0	17	1.02	Main
						35.8	41.0	5.2	1.93	Main
						178.3	181.6	3.3	1.00	FW
						208.9	211.6	2.7	1.96	FW
						233.9	237.0	3.1	0.72	FW

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						245.0	252.2	7.2	1.18	FW
AD-23-099	668440	5908717	512	-55	360	92.0	97.0	5.0	0.50	Main
						171.0	181.0	10.0	0.70	FW
						194.0	208.0	14.0	1.62	FW
AD-23-100	668441	5908641	511	-75	360	162.6	165.7	3.1	1.06	Main
						315.3	322.7	9.4	1.16	FW
AD-23-101	668780	5908999	521	-50	360	22.1	27	4.9	1.02	Main
						210	215	5.0	2.53	FW
AD-23-102	668343	5908635	506	-75	360	40.6	45.0	4.4	1.96	Main
						140.0	149.0	9.0	1.45	Main
						248.8	252.4	3.6	1.47	FW
						264.6	273.3	8.6	1.14	FW
AD-23-103	668343	5908635	506	-55	360	31.1	35.0	3.9	1.91	Main
						100.0	130.0	30.0	0.99	Main
	including					109.5	114.0	4.5	2.18	Main
						221.7	230.5	8.8	0.80	FW
						245.1	254.1	9.0	1.78	FW
AD-23-104	668343	5908730	510	-50	360	129.4	136.2	6.8	1.07	FW
						149.5	160.1	10.6	1.19	FW
AD-23-105	668516	5908738	515	-75	360	20.1	55.0	34.9	1.72	Main
						77.7	84.0	6.3	1.66	FW
AD-23-106	668966	5908702	512	-50	360	107.2	134.8	27.6	1.66	Main
						267.1	276.0	8.9	1.29	FW
						286.6	316.0	29.4	1.21	FW
AD-23-107	668240	5908732	508	-50	360	60.5	61.5	1.0	2.89	Main
						109.3	113.5	4.2	1.07	FW
						147.0	148.1	1.1	1.12	FW

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
ноје ју	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-108	668547	5908711	515	-50	360	32.1	55.9	23.8	1.48	Main
						91.8	103.2	11.4	2.19	Main
						225.6	230.8	5.2	1.19	FW
						253.3	271.7	18.4	0.82	FW
AD-23-109	668579	5908947	516	-50	360	46.7	49.0	2.3	0.33	Main
AD-23-110	669313	5908885	519	-50	360	50.4	62.9	12.6	1.92	Main
						195.9	200.9	5.0	1.95	FW
						233.3	237.3	4.0	1.34	FW
						242.3	252.4	10.2	1.67	FW
AD-23-111	669217	5908887	515	-50	360	17.9	27.7	9.8	1.44	Main
						197.6	208.6	11.0	1.54	FW
						229.3	244.65	15.3	1.60	FW
						249.9	253.0	3.1	0.64	FW
						258.1	261.7	3.6	0.97	FW
AD-23-112	668786	5908646	511	-70	360	162.6	195.7	33.1	0.47	Main
AD-23-113	669063	5908701	513	-60	360	99.0	110.6	11.6	1.23	Main
						139.25	146.5	7.25	0.94	Main
						166.0	170.0	4.0	2.25	Main
						271.6	279.7	8.1	1.94	FW
						324.0	332.0	8.0	0.97	FW
						381.8	386.8	5.0	1.97	FW
AD-23-114	669177	5908889	514	-50	360	10.2	48.25	38.1	0.97	Main
	including					20.6	33.5	12.9	2.01	Main
						179.7	193.8	14.1	1.54	FW
						224.6	237.9	13.3	1.57	FW
AD-23-115	668635	5908730	516	-50	360	34.2	52.0	17.8	1.50	Main
						92.5	102.3	9.7	0.78	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
noie ib	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						234.9	249.1	14.2	1.53	FW
						264.7	279.0	14.3	1.26	FW
AD-23-116	668708	5908639	512	-63	360	169.0	188.3	19.3	0.65	Main
						363.9	381.1	17.2	0.77	FW
AD-23-117	669135	5908893	514	-50	360	6.6	44.0	37.4	0.86	Main
						181.5	193.1	11.6	1.69	FW
						243.7	253.2	9.5	1.53	FW
AD-23-118	669141	5908700	515	-75	360	145.1	171.0	25.9	1.00	Main
	including					150.0	162.4	12.4	1.04	Main
						331.0	337.2	6.2	1.50	FW
AD-23-119	668634	5908650	515	-65	360	144.4	192.6	48.2	1.50	Main
						313.2	345.0	31.8	0.80	FW
	including					313.2	319.0	5.8	1.500	FW
AD-23-120	668580	5908684	515	-55	360	52.3	61.7	9.4	1.96	Main
						99.9	106.4	6.5	1.60	Main
						128.2	140.2	12.0	0.89	Main
						249.5	258.4	8.9	1.03	FW
AD-23-121A	669139	5908841	513	-60	360	39.4	65.2	25.8	1.06	Main
						175.2	183.9	8.7	0.76	FW
						207.55	219.55	12.0	1.20	FW
						230.0	245.5	15.5	1.95	FW
AD-23-122	668582	5908633	513	-80	360	199.3	206.3	7.0	1.80	Main
AD-23-123	668582	5908749	517	-45	360	24.3	27.7	3.4	0.99	Main
						52.2	79.3	27.1	1.72	Main
						113.5	118.6	5.1	0.87	FW
						212.5	220.8	8.3	0.94	FW
AD-23-124	669059	5908752	513	-55	360	59.2	72.4	13.2	2.67	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
noie iD	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	including					59.2	63.6	4.4	4.25	Main
						90.2	108.7	18.5	1.20	Main
						250.6	299.7	49.1	1.51	FW
						409.6	414.8	5.2	1.13	FW
AD-23-125	669218	5908835	515	-50	360	6.2	12.9	6.7	2.78	Main
						30.5	63.4	32.9	1.44	Main
						208.7	215.3	6.6	1.89	FW
						225.3	253.2	27.9	1.31	FW
AD-23-126A	668521	5908640	511	-55	360	132.5	144	11.5	1.59	Main
						152.0	163.4	11.4	1.08	Main
AD-23-127	668540	5908817	516	-45	360	3.9	27.0	23.1	1.72	Main
AD-23-128	668480	5908640	511	-55	360	115.4	138.7	23.3	0.75	Main
						247.2	261	13.8	0.78	FW
						276.9	290	13.1	1.43	FW
						321.0	324.0	3.0	1.81	FW
AD-23-129	668914	5908820	519	-50	360	19.0	71.8	52.8	1.46	Main
						205.1	209.7	4.6	1.38	FW
						217.1	230.6	13.5	1.13	FW
						239.6	250	10.4	0.99	FW
						281.6	291.9	10.3	0.78	FW
AD-23-130A	669224	5908795	515	-60	360	35.6	81.5	45.9	1.26	Main
	including					35.6	48.0	12.4	2.00	Main
	including					55.3	65.0	9.7	2.19	Main
						235.4	270.3	34.9	1.09	FW
	including					235.4	253.0	17.6	1.46	FW
						385.9	393.2	7.2	1.52	FW
AD-23-131	668683	5908906	518	-50	360	11.6	23.8	12.2	1.26	Main

WINSOMERESOURCES

III-II-ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
		, ,	Ì			43.7	58.8	15.1	0.48	Main
						202.1	206.7	4.6	0.63	FW
						221.3	227.6	6.3	1.61	FW
AD-23-132	668236	5908636	506	-75	360	16.8	26.1	9.4	1.30	Main
						183.6	187.6	4.0	1.34	FW
						224.0	227.0	3.0	1.29	FW
						243.3	247.4	4.1	1.43	FW
AD-23-133	668985	5909320	509	-55	335	111.9	113.9	2.0	0.94	FW
AD-23-134A	669140	5908785	511	-60	360	44.1	54.4	10.3	1.76	Main
						70.7	94.1	23.4	1.50	Main
						207.0	212.3	5.3	0.70	FW
						240.0	275.5	35.5	1.49	FW
AD-23-135	668858	5908865	526	-50	360	3.5	65.4	61.9	1.40	Main
	including					3.5	22.6	19.1	1.95	Main
	including					28.6	46.4	17.8	1.81	Main
						213.1	217.1	4.0	1.31	FW
						230.45	239.15	8.7	1.46	FW
						257.5	269.1	11.6	1.44	FW
AD-23-136	668236	5908636	506	-55	360	12.0	29.9	17.9	1.25	Main
						98.5	104.9	6.4	1.59	FW
						194.6	204.3	9.7	1.28	FW
AD-23-139	669141	5908738	510	-65	360	85.0	104.0	19.0	0.93	Main
						125.5	129.2	2.7	1.68	FW
						286.1	292.0	5.9	3.17	FW
						329.3	333.8	4.5	1.35	FW
AD-23-140	669086	5908921	520	-50	360	8.7	41.6	32.9	0.93	Main
					incl.	8.7	17.0	8.3	1.35	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
					incl.	35.0	41.6	6.6	1.51	Main
						189.0	200.0	11.0	1.75	FW
						214.2	222.0	7.8	0.93	FW
						231.6	248.2	7.1	1.18	FW
						255.1	259.1	4.0	1.38	FW
AD-23-141	669325	5909255	525	-55	335	27.9	31.2	3.3	1.25	Main
						146.2	151.9	5.7	1.37	FW
AD-23-142	668550	5908667	516	-50	360	61.2	70.4	9.2	1.04	Main
						98.7	105.2	6.5	1.21	Main
						114.15	118.8	4.7	1.70	Main
						124.1	129.3	5.2	1.54	Main
						137.6	144.1	6.5	0.99	Main
						255.6	257.5	1.9	1.74	FW
						275.75	281.75	6.0	0.84	FW
AD-23-143	669000	5908805	520	-45	360	36.0	87.5	51.5	1.78	Main
						214.3	221.1	6.8	1.51	FW
						245.8	252.5	6.7	1.71	FW
						271.0	298.0	27.0	1.19	FW
						319.5	323.9	4.4	1.19	FW
AD-23-145	669181	5909160	523	-50	360	62.3	67.5	5.2	1.15	FW
						186.6	194.2	7.6	1.34	FW
						235.2	241.8	6.6	0.85	FW
AD-23-148	668677	5909009	518	-45	360	80.0	11.1	3.1	2.01	Main
						117.3	118.1	0.8	1.51	FW
AD-23-149	669761	5908950	526	-60	330	72.8	84.8	12.1	1.26	Main
						281.7	284.3	2.6	0.73	FW
						296.0	301.4	5.4	1.51	FW

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Tiole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						346.7	350.1	3.4	1.22	FW
AD-23-150	669180	5909003	521	-50	360	28.9	38.7	9.8	1.30	Main
						186.9	203.5	16.6	0.82	FW
					incl.	186.9	191.4	4.5	1.16	FW
						235.1	241.6	6.5	0.61	FW
AD-23-151	668632	5908704	518	-70	360	41.5	45.5	4.0	0.66	Main
						122.8	135.7	12.9	0.43	Main
					incl.	132.0	135.7	3.7	1.11	Main
						234.0	237.7	3.7	1.13	FW
						255.6	258.9	3.3	1.07	FW
						268.0	272.0	4.0	1.25	FW
						283.2	303.5	20.3	0.84	FW
					incl.	283.2	290.0	6.8	1.32	FW
					incl.	299.0	303.5	4.5	1.15	FW
AD-23-152	669269	5908918	515	-45	360	28.0	53.6	25.6	1.84	Main
						199.9	207.6	7.7	0.73	FW
						221.7	226.7	5.0	1.62	FW
AD-23-154	669555	5908845	522	-55	330	61.8	75.7	13.9	1.95	Main
						308.3	315.6	7.3	1.07	FW
AD-23-155	668670	5908706	517	-55	360	100.9	141.0	40.1	0.89	Main
						268.8	273.0	4.2	1.43	FW
						335.0	344.3	9.3	0.53	FW
AD-24-156	669131	5909005	520	-50	360	28.2	34.8	6.6	1.62	Main
						59.4	66.6	7.2	0.95	Main
						175.7	188.9	13.2	1.11	FW
AD-24-158	669314	5908780	519	-60	360	84.6	88.9	4.3	0.95	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						277.9	287.0	9.1	1.61	FW
AD-24-160	668595	5908662	517	-65	360	133.7	157.3	23.6	0.64	Main
						183.6	189.0	5.4	1.89	FW
						304.0	313.0	9.0	2.50	FW
AD-24-162	669131	5909096	518	-45	360	8.3	12.0	3.7	1.43	Main
						63.3	66.5	3.2	0.91	FW
						75.0	78.7	3.7	1.57	FW
						217.3	221.0	3.7	0.93	FW
AD-24-163	669314	5908815	517	-50	360	50.2	59.9	9.7	0.86	Main
						65.6	78.0	12.4	1.09	Main
						260.8	273.5	12.7	1.49	FW
						282.2	289.8	7.7	1.11	FW
AD-24-165	668484	5908761	514	-50	360	3.0	53.0	50.0	1.31	Main
					incl	3.0	32.0	29.0	1.84	Main
						187.4	191.3	4.0	2.19	FW
						245.2	250.1	5.0	0.80	FW
AD-24-169	668343	5908841	507	-50	360	62.0	64.8	2.8	0.59	FW
						73.8	76.0	2.2	1.94	FW
						97.0	107.0	10.0	1.02	FW
						153.2	164.8	11.6	0.52	FW
AD-24-171	669271	5908828	515	-50	360	13.6	36.1	22.5	2.28	Main
						238.2	251.9	13.7	1.27	FW
						260.0.	276.1	16.1	1.49	FW
AD-24-172A	668240	5908836	507	-50	360	47	52.7	5.7	0.47	FW
AD-24-173	669469	5909201	519	-50	340	17.7	22	4.3	0.36	Main
						182.6	188.0	5.4	2.04	FW
AD-24-174	668482	5908701	512	-50	360	39.9	77.3	37.4	1.41	Main

WINSOMERESOURCES

Hele ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
					incl.	39.9	56.2	16.3	2.60	Main
						93.4	100.2	6.8	1.18	Main
AD-24-176	668152	5908843	508	-50	360	119.0	120.0	1.0	0.35	FW
AD-24-177	669660	5909206	518	-50	330	174.9	181.4	6.5	1.62	FW
AD-24-178	668019	5908727	505	-50	340			NSI		
AD-24-179	669184	5908794	513	-50	360	38.5	94.3	55.8	1.13	Main
					incl.	47.0.	56.0	9.0	1.55	Main
					incl.	85.0	94.3	9.3	1.85	Main
						215.0	220.3	5.3	1.78	FW
						243.7	256.0	12.3	1.10	FW
						274.4	284.5	10.1	1.13	FW
AD-24-180	668981	5909025	522	-50	360	3.6	25.0	21.4	1.27	Main
						170.7	175.0	3.3	1.03	FW
						187.5	190.8	3.3	0.78	FW
						220.8	228	7.2	1.24	FW
AD-24-182	669789	5909267	517	-50	330			NSI		
AD-24-183	669799	5909132	521	-50	335	7.1	13.9	6.8	0.60	Main
AD-24-185	669938	5909164	529	-50	335	9.3	12.5	3.2	2.62	Main
AD-24-187	670030	5909205	531	-50	335	21.1	28.3	7.2	1.49	Main
AD-24-188	669058	5908804	514	-45	360	59.4	85.1	25.7	1.01	Main
						204.9	208.6	3.7	1.24	FW
						225.5	236.5	11	1.32	FW
AD-24-190	670114	5909249	529	-50	335	4.8	6.3	1.5	1.39	Main
AD-24-191	669034	5908795	514	-45	360	43.6	91.4	47.8	1.36	Main
					incl.	45.4	53.0	7.6	2.21	Main
					incl.	55.9	65.4	9.5	2.46	Main
						222.1	229.9	7.8	1.64	FW

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						263.5	295.8	32.3	1.43	FW
					incl.	279.1	285.7	6.6	3.05	FW
AD-24-193A	668726	5908693	521	-65	360	131.0	140.0.	90	0.42	Main
						262.3	268.3	6	1.29	FW
						290.6	310	19.4	1.33	FW
AD-24-195	670201	5909296	526	-50	335			NSI		
AD-24-196	669315	5908725	521	-65	360	146.6	154.5	7.9	1.04	FW
AD-24-201	668720	5909112	512	-55	360			NSI		
AD-24-203A	669314	5908687	519	-75	360	134.7	138.6	3.9	0.87	Main
						348.9	355.7	6.8	1.11	FW

Appendix 3: Diamond Drilling Summary for Winsome's drilling program at Adina.

11.1.15	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-22-001	668477	5908772	511	-45	135	171.0
AD-22-002	668503	5908851	511	-45	135	213.0
AD-22-003	668555	5908901	513	-45	135	138.0
AD-22-004	668513	5908739	511	-45	135	147.0
AD-22-005	668542	5908812	513	-45	135	261.0
AD-22-005A	668542	5908812	513	-45	315	162.0
AD-22-006	668596	5908861	515	-45	135	118.0
AD-22-006B	668596	5908861	515	-45	315	56.5
AD-22-007	668430	5908809	510	-45	135	390.0
AD-22-008	668460	5908892	510	-45	135	210.2
AD-22-009	668512	5908942	511	-45	135	246.0
AD-22-011	668687	5908776	517	-45	320	150.0
AD-22-034	668688	5909055	519	-45	340	196.4
AD-22-035	668634	5908726	519	-45	315	186.0
AD-22-036	668687	5908776	517	-45	360	243.0
AD-22-037	668702	5908651	515	-45	315	228.0
AD-22-039	668702	5908651	515	-45	360	201.0
AD-22-041	668872	5908797	520	-45	360	213.0
AD-22-042	668968	5908803	520	-45	340	150.0
AD-22-043	670003	5909088	531	-45	340	141.1
AD-22-046	668968	5908803	520	-75	340	186.0
AD-22-055	668944	5908718	512	-55	330	300.0
AD-22-059	668944	5908718	512	-82	330	204.0
AD-23-010	668441	5908641	511	-55	360	300.0
AD-23-012	669380	5908952	519	-45	350	351.0
AD-23-013	669482	5908995	520	-45	338	246.0
AD-23-014	669478	5908900	522	-60	350	207.0
AD-23-015	669560	5908732	521	-50	330	459.0
AD-23-016	669583	5908994	522	-55	328	243.0
AD-23-017	669877	5908995	529	45	330	294.0
AD-23-018	668829	5909258	510	-60	335	304.0
AD-23-019	668829	5909261	510	-45	335	330.0
AD-23-020	670048	5909022	530	-45	330	229.0
AD-23-021	669185	5908751	514	-55	360	363.0
AD-23-022	669174	5908833	514	-55	360	450.0
AD-23-023	669195	5908663	517	-75	360	384.0
AD-23-024	669271	5908859	515	-45	330	384.0
AD-23-024A	669271	5908859	515	-50	360	259.2
AD-23-025	668898	5908704	514	-55	340	396.0

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-026	668898	5908704	514	-78	340	408.0
AD-23-027	668827	5908751	525	-50	350	444.4
AD-23-028	668735	5908748	518	-50	350	315.7
AD-23-029	669002	5908666	514	-55	350	402.0
AD-23-030	668874	5908645	508	-75	340	402.0
AD-23-031	669002	5908666	514	-75	350	387.0
AD-23-032	669384	5908756	520	-50	350	351.0
AD-23-033	668521	5908640	512	-75	360	408.0
AD-23-038A	668789	5908668	512	-60	350	420.0
AD-23-040	668769	5908781	519	-45	360	384.0
AD-23-044	670165	5909126	533	-45	340	168.0
AD-23-045	670312	5909224	533	-45	330	114.0
AD-23-047	669031	5908845	520	-45	340	444.0
AD-23-048	668702	5908651	515	-75	360	297.0
AD-23-049	669384	5908756	520	-70	350	375.0
AD-23-050	668789	5908668	512	-75	350	378.0
AD-23-051	668769	5908781	519	-75	360	392.5
AD-23-052	668566	5908827	518	-60	360	294.0
AD-23-053	669034	5908748	512	-45	360	187.0
AD-23-054	669090	5908854	512	-45	360	231.0
AD-23-056	670203	5909041	533	-45	340	276.0
AD-23-057	669037	5908748	512	-65	360	213.0
AD-23-058	669382	5908671	517	-70	350	411.0
AD-23-060	669036	5908750	512	-85	360	240.0
AD-23-061	668600	5908813	519	-70	360	288.0
AD-23-062	668641	5908834	517	-50	360	351.0
AD-23-063	670366	5908963	530	-45	330	254.0
AD-23-064	668689	5909085	512	-60	335	348.0
AD-23-065	668687	5908825	516	-45	360	330.0
AD-23-066	670095	5908783	520	-45	330	294.0
AD-23-067	669920	5908688	515	-50	330	249.0
AD-23-068	669102	5908677	517	-82	360	462.0
AD-23-069	668723	5908806	516	-50	360	352.5
AD-23-070	668780	5909054	516	-50	360	303.0
AD-23-071	669094	5908773	512	-85	360	324.0
AD-23-072	669094	5908773	512	-65	360	252.0
AD-23-073	669094	5908773	512	-45	360	292.1
AD-23-074	669195	5908663	517	-58	360	393.0
AD-23-075	669269	5908768	516	-50	360	372.0
AD-23-076	669269	5908768	516	-75	360	350.0

Hala ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-077	669270	5908672	517	-75	360	367.3
AD-23-077A	669270	5908672	517	-70	0	408.0
AD-23-078	668970	5909079	522	-50	340	153.4
AD-23-078A	668970	5909079	522	-45	340	255.0
AD-23-079	669670	5908840	525	-50	330	282.0
AD-23-080	668811	5908790	521	-50	360	321.0
AD-23-081	669462	5908746	522	-50	330	258.0
AD-23-082	669117	5909149	522	-50	340	273.0
AD-23-083	669281	5908956	519	-45	360	258.0
AD-23-084	669685	5909105	524	-50	330	228.0
AD-23-085	669084	5908977	522	-45	360	378.0
AD-23-086	668981	5908938	531	-45	360	378.0
AD-23-087	668827	5908806	520	-45	360	300.0
AD-23-088	669325	5909077	521	-50	340	366.0
AD-23-089	668683	5908906	518	-45	360	31.3
AD-23-090	668794	5908776	522	-45	360	321.0
AD-23-091	668782	5908901	518	-45	360	351.0
AD-23-092	668881	5908898	528	-45	360	399.0
AD-23-093	668869	5908740	519	-50	360	406.5
AD-23-094	669184	5909040	523	-45	360	252.0
AD-23-095	669181	5908952	516	-55	360	264.0
AD-23-096	669084	5909070	520	-45	360	150.0
AD-23-097	669381	5908856	519	-45	350	320.0
AD-23-098	668876	5909008	519	-45	360	336.0
AD-23-099	668440	5908717	512	-55	360	261.0
AD-23-100	668441	5908641	511	-75	360	390.0
AD-23-101	668780	5908999	521	-50	360	241.9
AD-23-102	668343	5908635	506	-75	360	375.0
AD-23-103	668343	5908635	506	-55	360	384.0
AD-23-104	668343	5908730	510	-50	360	417.0
AD-23-105	668516	5908738	515	-75	360	375.0
AD-23-106	668966	5908702	512	-50	360	414.0
AD-23-107	668240	5908732	508	-50	360	306.0
AD-23-108	668547	5908711	515	-50	360	342.0
AD-23-109	668579	5908947	516	-50	360	324.0
AD-23-110	669313	5908885	519	-50	360	297.0
AD-23-111	669217	5908887	515	-50	360	291.0
AD-23-112	668786	5908646	511	-70	360	365.0
AD-23-113	669063	5908701	513	-60	360	406.1
AD-23-114	669177	5908889	514	-50	360	254.6

	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-115	668635	5908730	516	-50	360	324.0
AD-23-116	668708	5908639	512	-63	360	411.0
AD-23-117	669135	5908893	514	-50	360	309.0
AD-23-118	669141	5908700	515	-75	360	387.4
AD-23-119	668634	5908650	515	-65	360	420.0
AD-23-120	668580	5908684	515	-55	360	344.2
AD-23-121A	669139	5908841	513	-60	360	354.0
AD-23-122	668582	5908633	513	-80	360	435.0
AD-23-123	668582	5908749	517	-45	360	356.5
AD-23-124	669059	5908752	513	-55	360	444.0
AD-23-125	669218	5908835	515	-50	360	357.0
AD-23-126A	668521	5908640	511	-55	360	375.0
AD-23-127	668540	5908817	516	-45	360	312.0
AD-23-128	668480	5908640	511	-55	360	375.0
AD-23-129	668914	5908820	519	-50	360	303.0
AD-23-130A	669224	5908795	515	-60	360	350.0
AD-23-131	668683	5908906	518	-50	360	306.0
AD-23-132	668236	5908636	506	-75	360	393.0
AD-23-133	668985	5909320	509	-55	335	342.0
AD-23-134A	669140	5908785	511	-60	360	402.0
AD-23-135	668858	5908865	526	-50	360	325.5
AD-23-136	668236	5908636	506	-55	360	363.0
AD-23-137	669072	5909322	511	-40	335	327.0
AD-23-138	668440	5908809	510	-50	360	306.0
AD-23-139	669141	5908738	510	-65	360	423.0
AD-23-140	669086	5908921	520	-50	360	250.0
AD-23-141	669325	5909255	525	-55	335	250.0
AD-23-142	668550	5908667	516	-50	360	453.0
AD-23-143	669000	5908805	520	-45	360	381.0
AD-23-144	669231	5908737	513	-60	360	408.0
AD-23-145	669181	5909160	523	-50	360	300.4
AD-23-146	668210	5908374	500	-55	360	438.4
AD-23-147	668010	5908374	500	-55	360	486.2
AD-23-148	668677	5909009	518	-45	360	252.0
AD-23-149	669761	5908950	526	-60	330	395.5
AD-23-150	669180	5909003	521	-50	0	273.0
AD-23-151	668632	5908704	518	-70	360	438.0
AD-23-152	669269	5908918	515	-45	360	288.0
AD-23-153	668010	5908274	505	-55	360	531.0
AD-23-154	669555	5908845	522	-55	330	393.3

Hala ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-155	668670	5908706	517	-55	360	400.0
AD-24-156	669131	5909005	520	-50	360	300.0
AD-24-157	668010	5908469	501	-55	360	429.0
AD-24-158	669314	5908780	519	-60	360	369.0
AD-24-159	667963	5908441	499	-50	335	384.0
AD-24-160	668595	5908662	517	-65	360	447.0
AD-24-161	668096	5908479	504	-45	340	324.0
AD-24-162	669131	5909096	518	-45	360	345.0
AD-24-163	669314	5908815	517	-50	360	375.0
AD-24-164	667798	5908300	494	-50	335	369.0
AD-24-165	668484	5908761	514	-50	360	363.0
AD-24-166	668200	5908469	502	-55	360	417.0
AD-24-167A	669215	5909097	523	-50	360	333.0
AD-24-168	667763	5908035	496	-50	330	427.0
AD-24-169	668343	5908841	507	-50	360	372.0
AD-24-170	668210	5908274	503	-55	360	398.7
AD-24-171	669271	5908828	515	-50	360	370.2
AD-24-172A	668240	5908836	507	-50	360	249.0
AD-24-173	669469	5909201	519	-50	340	342.0
AD-24-174	668482	5908701	512	-50	360	171.3
AD-24-175	667081	5907875	489	-50	335	347.2
AD-24-176	668152	5908843	508	-50	360	327.0
AD-24-177	669660	5909206	518	-50	330	446.0
AD-24-178	668019	5908727	505	-50	340	282.0
AD-24-179	669184	5908794	513	-50	360	393.0
AD-24-180	668981	5909025	522	-50	360	246.0
AD-24-181	667522	5908140	490	-50	335	371.3
AD-24-182	669789	5909267	517	-50	330	297.0
AD-24-183	669799	5909132	521	-50	335	270.0
AD-24-184	667597	5908211	495	-50	335	354.0
AD-24-185	669938	5909164	529	-50	335	363.0
AD-24-186	667428	5908107	493	-50	335	351.0
AD-24-187	670030	5909205	531	-50	335	349.2
AD-24-188	669058	5908804	514	-45	360	282.0
AD-24-189	667341	5908029	494	-50	335	375.0.
AD-24-190	670114	5909249	529	-50	335	351.0
AD-24-191	669034	5908795	514	-45	360	396.0
AD-24-192	668212	5908273	502	-65	360	465.0
AD-24-193A	668726	5908693	521	-65	360	411.0
AD-24-194A	667259	5907973	521.1	-50	335	351.0

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-24-195	670201	5909296	526	-50	335	273.0
AD-24-196	669315	5908725	521	-65	360	348.0
AD-24-197	668110	5908274	505	-55	360	429.0
AD-24-198	667165	5907937	489	-50	335	396.0
AD-24-199	670370	5909340	535	-50	335	297.7
AD-24-200	668233	5908636	507	-60	180	486.0.
AD-24-201	668720	5909112	512	-55	360	315.0
AD-24-202	667000	5907835	498	-50	335	402.0
AD-24-203A	669314	5908687	519	-75	360	402.0.
AD-24-204	668800	5909122	515	-55	360	342.0
AD-24-205A	670400	5909259	529	-50	335	390.0.
AD-24-206	668120	5908660	515	-50	360	393.0
AD-24-207	666950	5907694	335	-50	482	450.0
AD-24-208	668824	5908954	360	-55	517	306.0
AD-24-209	668900	5908700	360	-65	513	389.0
AD-24-210	668202	5908359	360	-60	505	471.0
AD-24-211	670430	5909180	335	-50	529	306.0
AD-24-212	666872	5907659	335	-50	482	447.0
AD-24-213	667862	5908637	335	-55	521	279.0
AD-24-214	668884	5908948	360	-45	526	366.0
AD-24-215	668917	5908751	360	-55	518	444.0
AD-24-216	666781	5907607	335	-50	484	420.0
AD-24-217A	668256	5907453	350	-50	493	375.0
AD-24-218	669928	5908887	335	-50	523	351.0
AD-24-219	666671	5907568	335	-50	486	378.0
AD-24-220	668091	5907377	350	-50	485	300.0
AD-24-221	669928	5908887	335	-50	523	351.0
AD-24-222	668308	5908631	355	-52	502	351.0
AD-24-223	667151	5907717	360	-50	486	252.0
AD-24-224	666815	5908073	335	-50	540	300.0
AD-24-225	670081	5909109	335	-50	531	303.0
AD-24-226	668303	5908734	360	-52	506	387.0
AD-24-227	670248	5909210	335	-50	528	336.7
AD-24-228	668641	5908898	360	-50	515	288.0
AD-24-229	670299	5909119	335	-50	532	367.1
AD-24-230	666629	5908050	335	-50	534	354.0
AD-24-231	668563	5908888	360	-50	512	306.0
AD-24-232	666705	5908101	335	-50	528	389.0
AD-24-233	668683	5908954	360	-55	519	303.0
AD-24-234	670507	5909324	340	-50	529	331.0

WINSOMERESQUECES

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-24-235	666864	5908260	335	-50	541	261.0
AD-24-236	668720	5908904	360	-50	522	342.0
AD-24-237	666963	5908265	335	-50	546	259.7
AD-24-238	670474	5908987	340	-50	519	150.0
AD-23-M001	668689	5908771	517	-65	360	351.0
AD-23-M002	668881	5908792	518	-65	360	351.0
AD-23-M003	669041	5908746	512	-80	360	189.0
AD-23-M004	668600	5908813	519	-70	360	90.0
AD-23-M005	668884	5908897	527	-75	360	237.0
AD-23-M007	668566	5908825	518	-60	360	87.0
AD-23-M009	669135	5908890	514	-55	360	78.0
AD-23-M010	669050	5909065	521	-65	360	195.0
AD-24-M011	668539	5908768	360	-55	516	240.19

Legend for Appendix 3:

AD-22-005 Assays previously reported

AD-22-001 Assays reported in this announcement

AD-22-006 Assays awaited, collar/lithological data reported previously

AD-22-060 Assays awaited, collar/lithological data reported in this announcement

Appendix 4: JORC Code, 2012 edition Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
Sampling techniques	 All core is NQ (76mm outer diameter, 47.6mm core diameter) in this program except metallurgical drilling which is drilled using HTW sized core. Core sample intervals were geologically logged, measured for average length, photographed, and placed into numbered core trays.
	Drill core was split (sawn) at the Winsome facility at the project base in Eeyou Istchee James Bay, with half core samples submitted for analysis.
	 Samples from Adina were sent to SGS Minerals Geochemistry and MSALABS Inc under standard preparation procedures.
	Gravity data obtained by ground measurements at regular intervals.
Drilling techniques	NQ diamond drilling was completed at Adina.
	 Oriented core drilling was not completed. Downhole surveying was conducted using a gyro-based system.
Drill sample recovery	The recovery of the diamond drilling samples was reported by the operators and supervised by our consulting geologist.
	No sample bias has been established.
Logging	 NQ core was logged and cut according to geological boundaries, with ~1 m intervals targeted for individual samples.
	 For RC and DD drilling features such as rock type, modal mineralogy, rock textures, alteration were recorded. Geological logging information is recorded directly into the MX Deposit system, with weekly backups.
	 The core is stored in the Services MNG yard in Val d'Or which is a secure location. Services MNG are contracted to provide geological and technical services to the Company.
	 Various qualitative and quantitative logs were completed. All core has been photographed.
	The logging database contains lithological data for all intervals in all holes in the database.
Sub-sampling techniques and sample preparation	 Adina drill core was split (sawn) at the Winsome core logging and cutting facility located at the project base in Eeyou Istchee James Bay, with half core samples from appropriate intervals submitted to SGS or MSA Labs preparation facilities in Val-d'Or, Quebec.
	 Half core NQ samples are believed to be representative of the mineralisation targeted. Sampling intervals are based on geological boundaries to aid representivity.
	 Samples are crushed, milled and split at the laboratory (SGS & MSA) to achieve a 250g sub-sample for assay. Laboratory QC procedures for

Criteria	Explanation
	sample preparation include quality control on checks crushing and milling to ensure representivity.
Quality control & Quality of assay data and laboratory tests	 Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. SGS, AGAT and MSA are all internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements.
	 Samples are submitted for multi-element ICP analysis by SGS. AGAT and MSA Laboratories which is an appropriate technique for high-grade lithium analysis.
	 Sodium Peroxide Fusion is used followed by combined ICP-AES and ICP-MS analyses (56 elements). Li is reported by the lab and converted to Li₂O for reporting using a factor of 2.153.
	No handheld instruments were used for analysis.
	 Comparison of results with standards indicate sufficient quality in data. No external laboratory checks have been used but are planned to be completed shortly.
	 Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4 kg), duplicates sampled in the field and pulp duplicates at the lab.
	 Blank samples were submitted at a rate of approximately 5%, same for duplicates and repeat assay determinations, whereas standards were submitted at a rate of approximately 20%.
Verification of sampling and	Significant intersections have been estimated by consultants to the company and cross checked.
assaying	 Hard copy field logs are entered into and validated on an electronic database (MX Deposit), which is maintained by Winsome on site in Eeyou Istchee James Bay and backed up regularly by the Company's IT consultants in Val D'Or.
	 Data verification is carried out by the Project Geologist on site, and a final verification was performed by the Senior Geologist and the geologist responsible for database management. An independent verification is carried out by consultants to the company.
	 No assays have been adjusted. A factor of 2.153 has been applied to the reported Li assays by the laboratory so to report as Li₂O.
Location of data points	 The drill holes and gravity stations have been located by hand-held GPS (Trimble) with ~1m accuracy. Drillholes are later picked up by dGPS (<1m accuracy). Historical drill holes have been verified by GPS.
	The grid datum is NAD83. Zone 18N.

Criteria	Explanation
	 Topographic elevation and landmarks are readily visible from a Digital Elevation Model with a 50cm grid resolution and orthophoto obtained from Lidar surveys performed in 2017 and 2022 over the property. Government topographic maps have been used for topographic validation. The GPS is otherwise considered sufficiently accurate for elevation data.
	 Down hole dip surveys were taken at approximately 30m intervals and at the bottom of the diamond drill holes.
Data spacing and distribution	In this early delineation stage, drilling is largely set along sections at 100m spacing and aiming to intercept targeted horizon at 80-100m centres. Infill drilling has been completed to 50m spacing in places.
	 No assessment has been made regarding the current drill hole location and intersections with respect to resources or reserve estimation.
	 No sample compositing has been completed. However, internal dilution of non-mineralised material into calculated grade over widths reported herein may occur but is not considerable.
Orientation of data in relation to geological structure	Drilling is designed to confirm the historical drilling results and test potential mineralisation. Initial 2022 drilling was oriented subperpendicular to the potential mineralised trend and stratigraphic contacts as determined by field data and cross section interpretation. Intersection widths will therefore be longer than true widths. Current drilling is oriented perpendicular to the mineralisation and stratigraphic contacts as determined by drill data and cross section interpretation. Intersection widths should therefore approximate true widths
	 No significant sample bias has been identified from drilling due to the drill orientation described above. Where present, sample bias will be reported.
Sample security	The company takes full responsibility on the custody of the samples including the sampling process itself and transportation.
	 Samples are shipped during the weekly supply run and delivered directly to the respective laboratories.
Audits or reviews	 No external audit of the database has been completed, apart from by consulting geologists acting on behalf of the company.

Section 2 Reporting of Exploration Results

(Criteria in the preceding section also apply to this section.)

Criteria	Explanation
Mineral tenement and land tenure status	The Winsome Adina Lithium Project is 100% owned by Winsome Adina Lithium Inc.
	All tenements are in good standing and have been legally validated by a Quebec lawyer specialising in the field.
Exploration done by other parties	Initial Exploration and Review was undertaken by MetalsTech Limited.
	Government mapping records multiple lithium bearing pegmatites within the project areas with only regional data available.
Geology	The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite body is oriented sub-parallel to the general strike of the host rocks. The host rocks are composed of Archean Lac Guyer greenstone rocks, which include mafic and ultramafic rocks interlayered with horizons of metasedimentary and felsic volcanic rocks
Drill hole Information	For the current drill program, the following information has been included for all holes reported:
	 easting and northing of the drill hole collar
	 elevation or RL (reduced level – elevation above sea level in metres) of the drill hole collar
	dip and azimuth of the hole
	down hole length and interception level
	hole length
	 A summary of historical drill hole information was included in the Independent Geologists Report prepared by Mining Insights within the Company's prospectus
Data aggregation methods	No sample weighting or metal equivalent values have been used in reporting.
	Aggregation issues are not considered material at this stage of project definition. No metal equivalent values were used
Relationship between mineralisation widths and intercept lengths	The pierce angle of the drilling varies from hole to hole, in order to attempt, wherever possible, to represent true widths
Diagrams	See figures and maps provided in the text of the announcement.
Balanced reporting	Winsome Resources Ltd will endeavour to produce balanced reports accurately detailing all results from any exploration activities.
	All drillholes and intersections have been presented in this announcement and in previous announcements.

Criteria	Explanation
Other substantive exploration data	 All substantive exploration data has been included in ASX Announcements. No other substantive exploration data is available at this time.
Further work	Winsome Resources Ltd continues to complete further site investigations.
	 Further work planned includes comprehensive data interpretation, field mapping, and exploration and resource delineation drilling.

Section 3 Reporting of Mineral Resources

(Criteria in the preceding section also apply to this section.)

Criteria	Explanation
Database integrity	Drilling data is stored in a proprietary database software which validates logging, sampling and assay data on import.
	 Following importation, the data goes through a series of digital and visual checks for duplication and non- conformity, followed by manual validation.
	 The database has been audited by the CP as part of the estimation process. No major discrepancies were found.
Site visits	AF oversees all drilling and sampling activities. He regularly attends site and understand details associated with the site setting and location.
	 KG has not visited site and has completed work based on information provided to him by Winsome and other consultants.
Geological interpretation	The confidence in the geological interpretation is considered to be moderate.
	 Geological logging has been used to assist identification of lithology and mineralisation. The pegmatites are prominent in logging.
	 Alternative orientations to the pegmatites, and hence mineralisation, are unlikely, however there are likely to be alternative ways to trace pegmatite dykes, and/or lithium mineralisation, from drillhole to drillhole which will impact local grade estimations.
	 Both lithology and assay data have been used to create the geological interpretation. In future more detailed logging, specifically mineralogy, will aid a more detailed geological interpretation which in turn will allow more a more definitive geological model to be created.
	 Continuity of geology is readily observable, continuity of grade is more difficult to define.
Dimensions	The approximate dimensions of the Adina deposit as modelled is 2,300m east – west, 750m north-south, with drilling intersecting mineralisation to a depth of 350m below surface. The resource has been reported within the Adina claims and truncated at claim boundaries where intersected.

Criteria	Explanation
Estimation and modelling techniques	 Grade estimation using Ordinary Kriging (OK) was undertaken using Surpac software. Detailed statistical and geostatistical investigations have been completed on the captured estimation data set (1m composites derived from sampling primarily carried out at 1m intervals). This includes exploration data analysis, boundary analysis and grade estimation trials. The variography applied to grade estimation has been generated using Snowden Supervisor. These investigations have been completed on the ore domain only. KNA analysis has also been conducted in Snowden Supervisor in various locations on the ore domain to determine the optimum block size, minimum and maximum samples per search and search distance.
	 Li₂O (%) was estimated using parent cell estimation, with density being estimated using a regression formula based on Li₂O content. Density for lithologies other than pegmatites was assigned based on lithology. Drill hole data was coded using three dimensional domains reflecting the geological interpretation based on the structural and lithological characteristics of the Mineral Resource. One metre composited data was used to estimate the domains. The domains were treated as hard boundaries and only informed by data from the domain.
	 No top cuts were used as no outliers were observed in the sample distributions.
	 A Parent block size was selected at 10mE x 10mN x 5mRL, with sub- blocking down to 5m x 5m x 2.5m
	 The estimation search used a minimum of 7 samples and a maximum of 14 samples within the search ellipse.
	 A dynamic anisotropy search strategy was used with the search ellipse oriented to the dip and dip direction of the pegmatites. The Mineral Resource was informed by this estimation search ellipse in 3 passes of ¼, ½, 1 times the range of 183m.
	 No assumption of mining selectivity has been incorporated into the estimate.
	 The deposit mineralisation was constrained by wireframes constructed based on geology (pegmatites) and grade (>0.2% Li₂O).
	 Validation checks included statistical comparison between drill sample grades and the OK estimate results for each section. Visual validation of grade trends for each element along the drill sections was completed and trend plots comparing drill sample grades and model grades for northings, eastings and elevation were completed. These checks show reasonable correlation between estimated block grades and drill sample grades.
	No reconciliation data is available as no mining has taken place.
Moisture	Tonnages have been estimated on a dry in situ basis. No moisture values were reviewed.

Criteria	Explanation
Cut-off parameters	 The cut-off grade of 0.6% Li₂O for the stated Mineral Resource estimate is determined from economic parameters and reflects the current and anticipated mining practices, including reference to adjacent projects.
Mining factors or assumptions	 Preliminary review of the mining assumptions took place. Given the strike and width of the resource domains, as well as their location close to surface, the assumed mining method is open cut.
	 Initial mining studies were carried out using the 2023 MRE. Results of these informed the parameters for the RPEEE pit shell. No mining dilution, minimum mining widths or cost factors were assumed or applied to the MRE itself.
	 Desktop geotechnical review was completed to confirm initial parameters used in RPEEE optimisations.
Metallurgical factors or assumptions	 Test work was carried out on samples from Adina in 2022 and 2024 with recoveries and concentrate specifications consistent with other lithium development projects in Quebec and globally.
	 No further, or detailed metallurgical assumptions or modifying factors have been considered necessary for application to the estimation process.
	 A further phase of metallurgical test work is currently underway on samples from Adina, with results from this and previous to be fed into project studies.
Environmental factors or assumptions	Given the inferred classification of the resource, no detailed environmental assumptions or modifying factors have been considered necessary for application to the estimation process.
Bulk density	 Bulk densities for the pegmatite host rock and country rock have been estimated based on data from core samples from Adina. A total of 136 measurements were taken, excluding QA/QC samples including 83 pegmatite samples. A regression formula of 0.06914*Li₂O+2.62721 was derived based on the corresponding Li₂O assays for each sample measured and has been used to estimate the SG for the pegmatite blocks in the MRE.
	Bulk densities for other lithologies were also measured however an average value has been assigned for the waste and for the overburden.
	 Further measurements are recommended to be taken as more drilling takes place.
Classification	The Adina Mineral Resource has been classified as Indicated and Inferred and reported in accordance with the JORC Code, 2012 edition. Resource classification is based on drill spacing and the level of detail of the mineralisation model.
	The Mineral Resource reflects the Competent Persons view of the deposit.
Audits or reviews	No audits or review of the Mineral Resource estimate has been conducted.
Discussion of	The Mineral Resource estimate has been classified as Indicated and

Criteria	Explanation
relative accuracy/ confidence	Inferred. The drilling, geological interpretation and grade estimation reflects the confidence level applied to the Mineral Resource.
	The Mineral Resource statement relates to global estimates of tonnes and grade.